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When old age shall this generation waste, 

Thou shalt remain, in midst of other woe 

Than ours, a friend to man, to whom thou say'st, 

"Beauty is truth, truth beauty," -that is all 

Ye know on earth, and all ye need to know. 

-JOHN KEATS, Ode on a Grecian Urn 
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1 he date is 1 3  May 1 832. In the dawn mist, two young Frenchmen face 
each other, pistols drawn, in a duel over a young woman. A shot is 
fired; one of the men falls to the ground, fatally wounded. He dies 
two weeks later, from peritonitis, aged 21 , and is buried in the com­

mon ditch-an unmarked grave. One of the most important ideas in the 
history of mathematics and science very nearly dies with him. 

The surviving duelist remains unknown; the one who died was Evariste 
Galois, a political revolutionary and a mathematical obsessive whose col­
lected works fill a mere sixty pages. Yet Galois left a legacy that revolution­
ized mathematics. He invented a language to describe symmetry in 
mathematical structures, and to deduce its consequences. 

Today that language, known as "group theory," is in use throughout 
pure and applied mathematics, where it governs the formation of patterns 
in the natural world. Symmetry also plays a central role at the frontiers of 
physics, in the quantum world of the very small and the relativistic world 
of the very large. It may even provide a route to the long-sought "Theory 
of Everything," a mathematical unification of those two key branches of 
modern physics. And it all began with a simple question in algebra, about 
the solutions of mathematical equations-finding an "unknown" number 
from a few mathematical clues. 

Symmetry is not a number or a shape, but a special kind of transforma­
tion--a way to move an object. If the object looks the same after being 
transformed, then the transformation concerned is a symmetry. For in­
stance, a square looks the same if it is rotated through a right angle. 

This idea, much extended and embellished, is fundamental to today's 
scientific understanding of the universe and its origins. At the heart of Al­
bert Einstein's theory of relativity lies the principle that the laws of 

ix 
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physics should be the same in all places and at all times. That is, the laws 
should be symmetric with respect to motion in space and the passage of 
time. Quantum physics tells us that everything in the universe is built from 
a collection of very tiny "fundamental" particles. The behavior of these 
particles is governed by mathematical equations-"laws of nature"-and 
those laws again possess symmetry. Particles can be transformed mathe­
matically into quite different particles, and these transformations also 
leave the laws of physics unchanged. 

These concepts, and more recent ones at the frontiers of today's 
physics, could not have been discovered without a deep mathematical un­
derstanding of symmetry. This understanding came from pure mathemat­
ics; its role in physics emerged later. Extraordinarily useful ideas can arise 
from purely abstract considerations-something that the physicist Eu­
gene Wigner referred to as "the unreasonable effectiveness of mathemat­
ics in the natural sciences." With mathematics, we sometimes seem to get 
more out than we put in. 

Starting with the scribes of ancient Babylon and ending with the physi­
cists of the twenty-first century, Why Beauty Is Truth tells how mathemati­
cians stumbled upon the concept of symmetry, and how an apparently 
useless search for what turned out to be an impossible formula opened a 
new window on the universe and revolutionized science and mathematics. 
More broadly, the story of symmetry illustrates how the cultural influence 
and historical continuity of big ideas can be brought into sharp relief by 
occasional upheavals, both political and scientific. 

The first half of the book may seem at first sight to have nothing to do 
with symmetry and precious little to do with the natural world. The reason 
is that symmetry did not become a dominant idea by the route one might 
expect, through geometry. Instead, the profoundly beautiful and indispen­
sable concept of symmetry that mathematicians and physicists use today 
arrived via algebra. Much of this book, therefore, describes the search for 
solutions of algebraic equations. This may sound technical, but the quest 
is a gripping one, and many of the key players led unusual and dramatic 
lives. Mathematicians are human, even though they are often lost in ab­
stract thought. Some of them may let logic rule their lives too much, but 
we shall see time and again that our heroes could in fact be all too human. 
We will see how they lived and died, read of their love affairs and duels, vi-
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cious priority disputes, sex scandals, drunkenness, and disease, and along 
the way we will see how their mathematical ideas unfolded and changed 
our world. 

Beginning in the tenth century BeE and reach ing its climax with G alois 
in the early nineteenth century, the narrative retraces the step-by-step con­
quest of equations-a process that even tually ground to a halt when 

mathematicians tried to conquer the so-called "quintic" equation, involv­
ing the fifth power of the unknown. Did the methods break down be­
cause there was something fundamentally diff erent about the quintic 
equation? Or might there be similar, yet more powerful methods that 
would lead to formulas for its solution? Were mathematicians stuck be­
cause of a genuine obstacle, or were they just being obtuse? 

It is important to understand that solutions to quintic equations were 

known to exist. The question was, can they always be represented by an al­
gebraic formula? In 1821 the young Norwegian Niels Henrik Abel proved 

that the quintic equation cannot be solved by algebraic means. His proof ,  
however, was rather mysterious and indirect. It proved that no general so­
lution is possible, but it did not really explain why. 

It was Galois who discovered that the impossibility of solving the quin­
tic stems from the symmetries of the equation. If those symmetries pass 
the Galois test, so to speak-meaning that they fit together in a very spe­
cific way, which I will not explain just yet-then the equation can b e  
solved by an algebraic formula. If the symmetr ies do not pass the Galois 
test, then no such formula exists. 

The general quintic equation cannot be solved by a formula because it 
has the wrong kind of symmetries. 

T his epic discovery created the second theme of this book: that of a 
group--a mathematical "calculus of symmetry." Galois took an ancien t  
mathematical tradition, algebra, and reinvented it a s  a tool for the study of 
symmetry. 

At this stage of the book, words like "group" are unexplained j argon. 
When the meaning of such words becomes important to the story, I will 

explain them. But sometimes we just need a convenient term to keep 
track of various items of baggage. If you run into something that looks 
like jargon but is not immediately discussed, then it will be playing the 
role of a useful label, and the actual meaning won' t matter very much. 
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Sometimes the meaning will emerge anyway if you keep reading. 
"Group" is a case in point, but we won' t find out what it means until the 
middle of the book. 

Our story also touches upon the curious significance of particular 
numbers in mathematics. I am not referring to the fundamental constants 
of physics but to mathematical constants like rr (the Greek letter pi) . The 
speed of light, for instance, might in principle be anything, but it happens 
to be 1 86,000 miles per second in our universe. On the other hand, rr is 
slightly larger than 3 . 1 41 59, and nothing in the world can change that 
value. 

The unsolvability of the quintic equation tells us that like rr, the number 
5 is also very unusual. I t  is the smallest number for which the associated 
symmetry group fails the Galois test. Another curious example concerns 
the sequence of numbers 1 , 2, 4, 8 .  Mathematicians discovered a series of 
extensions of the ordinary "real" number concept to complex numbers 
and then to things called quaternions and octonions. These are con­
structed from two copies of the real numbers, four copies, and eight 
copies, respectively. What comes next? A natural guess is 1 6, but in fact 
there are no further sensible extensions of the number system. This fact is 
remarkable and deep. It tells us that there is something special about the 
number 8, not in any superficial sense, but in terms of the underlying 
structure of mathematics itself 

In addition to 5 and 8, this book features appearances by several other 
numbers, most notably 1 4, 52, 78, 1 33, and 248. These curious numbers 
are the dimensions of the five "exceptional Lie groups," and their influ­
ence pervades the whole of mathematics and much mathematical physics. 
They are key characters in the mathematical drama, while other numbers, 
seemingly little different, are mere bit players. 

Mathematicians discovered just how special these numbers are when 
modern abstract algebra came into being at the end of the nineteenth cen­
tury. What counts is not the numbers themselves but the role they play in 
the foundations of a lgebra. Associated with each of these numbers is a 
mathematical object called a Lie group with unique and remarkable prop­
erties. These groups play a fundamental role in modern physics, and they 
appear to be related to the deep structure of space, time, and matter. 
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That leads to our final theme: fundamental physics. Physicists have long 
wondered why space has three dimensions and time one-why we live in a 
four-dimensional space-time. The theory of superstrings, the most recent 
attempt to unify the whole of physics into a single coherent set of laws, 
has led physicists to wonder whether space-time might have extra "hid­
den" dimensions. This may sound like a ridiculous idea, but it has good 
historical precedents. The presence of additional dimensions is probably 
the least objectionable feature of superstring theory. 

A far more controversial feature is the belief that formulating a new 
theory of space and time depends mainly on the mathematics of relativity 
and quantum theory, the two pillars on which modern physics rests. Uni­
fying these mutually contradictory theories is thought to be a mathemati­
cal exercise rather than a process requiring new and revolutionary 
experiments. Mathematical beauty is expected to be a prerequisite for 
physical truth. This could be a dangerous assumption. It is important not 
to lose sight of the physical world, and whatever theory finally emerges 
from today's deliberations cannot be exempt from comparison with ex­
periments and observations, however strong its mathematical pedigree. 

At the moment, though, there are good reasons for taking the mathe­
matical approach. One is that until a really convincing combined theory is 
formulated, no one knows what experiments to perform. Another is that 
mathematical symmetry plays a fundamental role in both relativity and 
quantum theory, two subjects where common ground is in short supply, 
so we should value whatever bits of it we can find. The possible structures 
of space, time, and matter are determined by their symmetries, and some 
of the most important possibilities seem to be associated with exceptional 
structures in algebra. Space-time may have the properties it has because 
mathematics permits only a short list of special forms. If so, it makes 
sense to look at the mathematics. 

Why does the universe seem to be so mathematical? Various answers 
have been proposed, but I find none of them very convincing. The sym­
metrical relation between mathematical ideas and the physical world, like 
the symmetry between our sense of beauty and the most profoundly im­
portant mathematical forms, is a deep and possibly unsolvable mystery. 
None of us can say why beauty is truth, and truth beauty. We can only 
contemplate the infinite complexity of the relationship. 
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THf SCHIBfS Of BRBVlOH 

R cross the region that today we call Iraq run two of the most famous 
rivers in the world, and the remarkable civilizations that arose there 
owed their existence to those rivers. Rising in the mountains of east­
ern Turkey, the rivers traverse hundreds of miles of fertile plains, and 

merge into a single waterway whose mouth opens into the Persian Gulf. 
To the southwest they are bounded by the dry desert lands of the Arabian 
plateau; to the northeast by the inhospitable ranges of the Anti-Taurus 
and Zagros Mountains. The rivers are the Tigris and the Euphrates, and 
four thousand years ago they followed much the same routes as they do 
today, through what were then the ancient lands of Assyria, Akkad, and 
Sumer. 

To archaeologists, the region between the Tigris and Euphrates is 
known as Mesopotamia, Greek for "between the rivers." This region is of­
ten referred to, with justice, as the cradle of civilization. The rivers 
brought water to the plains, and the water made the plains fertile. Abun­
dant plant life attracted herds of sheep and deer, which in turn attracted 
predators, among them human hunters. The plains of Mesopotamia were 
a Garden of Eden for hunter-gatherers, a magnet for nomadic tribes. 

In fact, they were so fertile that the hunter-gatherer lifestyle eventually 
became obsolete, giving way to a far more effective strategy for obtaining 
food. Around 9000 BCE, the neighboring hills of the Fertile Crescent, a lit­
tle to the north, bore witness to the birth of a revolutionary technology: 
agriculture. Two fundamental changes in human society followed hard on 
its heels: the need to remain in one location in order to tend the crops, and 
the possibility of supporting large populations. T his combination led to the 
invention of the city, and in Mesopotamia we can still find archaeological 
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remains of  some of  the earliest of  the world's great city-states: Nineveh, 
Nimrud, Nippur, Uruk, Lagash, Eridu, Ur, and above all, Babylon, land of 
the Hanging Gardens and the Tower of Babel. Here, four millennia ago, 
the agricultural revolution led inevitably to an organized society, with all the 
associated trappings of government, bureaucracy, and military power. Be­
tween 2000 and 500 BCE the civilization that is loosely termed "Babylon­
ian" flourished on the banks of the Euphrates. It is named for its capital 
city, but in the broad sense the term "Babylonian" includes Sumerian and 
Akkadian cultures. In fact, the first known mention of Babylon occurs on a 
clay tablet of Sargon of Akkad, dating from around 2250 BCE, although 
the origin of the Babylonian people probably goes back another two or 
three thousand years. 

We know very little about the origins of "civilization"-a word that lit­
erally refers to the organization of people into settled societies. Neverthe­
less, it seems that we owe many aspects of our present world to the 
ancient Babylonians. In particular, they were expert astronomers, and the 
twelve constellations of the zodiac and the 360 degrees in a circle can be 
traced back to them, along with our sixty-second minute and our sixty­
minute hour. The Babylonians needed such units of measurement to 
practice astronomy, and accordingly had to become experts in the time­
honored handmaiden of astronomy: mathematics. 

Like us, they learned their mathematics at school. 

"�!( 
..

..
..•...... 

"What's the lesson today?" Nabu asked, setting his packed lunch down be­
side his seat. His mother always made sure he had plenty of bread and 
meat-usually goat .  Sometimes she put a piece of cheese in for variety. 

"Math," his friend Gamesh replied gloomily. "Why couldn't it be law? I 
can do law." 

Nabu, who was good at mathematics, could never quite grasp why his 
fellow students all found it so difficult. "Don't you find it boring, Gamesh, 
copying all those stock legal phrases and learning them by heart?" 

Gamesh, whose strengths were stubborn persistence and a good mem­
ory, laughed. "No, it's easy. You don't have to think. " 

"That's precisely why I find it boring," his friend said, "whereas math-" 
"-is imposs ible," Humbaba j oined in, having just  arrived at the 

Tablet House, late as usual. "I mean, Nabu, what am I supposed to do 
with this?" He gestured at a homework problem on his tablet. "I multiply 
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a number by itself and add twice the number. The result is 24. What is 
the number?" 

"Four," said Nabu. 
"Really?" asked Gamesh. Humbaba said, "Yes, I know, but how do you 

get that?" 
Painstakingly, Nabu led his two friends through the procedure that their 

math teacher had shown them the week before. ''Add half of 2 to 24, get­
ting 25. Take the square root, which is 5-" 

Gamesh threw up his hands, baffled. "I've never really grasped that 
stuff about square roots, Nabu." 

''Aha! '' said Nabu. "Now we're getting somewhere!" His two friends 
looked at him as if he'd gone mad. "Your problem isn't solving equations, 
Gamesh. It's square roots !" 

"It's both," muttered Gamesh. 
"But square roots come first. You have to master the subject one step at 

a time, like the Father of the Tablet House keeps telling us." 
"He also keeps telling us to stop getting dirt on our clothes," protested 

Humbaba, "but we don't take any notice of-" 
"That's different. It's-" 
"It's no good!" wailed Gamesh. "I'll never become a scribe, and my fa­

ther will wallop me until I can't sit down, and mother will give me that 
pleading look of hers and tell me I've got to work harder and think of the 
family. But I can't get math into my head! Law, I can remember. It's fun! I 
mean how about 'If a gentleman's wife has her husband killed on account 
of another man, they shall impale her on a stake'? That' s  what I call worth 
learning. Not dumb stuff like square roots." He paused for breath and his 
hands shook with emotion. "Equations, numbers-why do we bother?" 

"Because they're useful," replied Humbaba. "Remember all that legal 
stuff about cutting off slave's ears?" 

"Yeah!" said Gamesh. "Penalties for assault." 
"Destroy a common man's eye," prompted Humbaba, "and you must 

pay him-" 
"One silver mina," said Gamesh. 
''And if you break a slave's bone?" 
' 'You pay his master half the slave's price in compensation." 
Humbaba sprung his trap. "So, if the slave costs sixty shekels, then you 

have to be able to work out half of sixty. If you want to practice law, you 
need math!" 
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"The answer's thirty," said Gamesh immediately. 
"See!" yelled Nabu. "You can do math!" 
"I don't need math for that, it's obvious." The would-be lawyer flailed 

the air, seeking a way to express the depth of his feelings. "If it's about the 
real world, Nabu, yes, I can do the math. But not artificial problems about 
square roots." 

"You need square roots for land measurement," said Humbaba. 
' 'Yes, but I'm not studying to become a tax collector, my father wants 

me to be a scribe," Gamesh pointed out. "Like him. So I don't see why I 
have to learn all this math." 

"Because it's useful," Humbaba repeated. 
"I don't think that's the real reason," Nabu said quietly. "I think it's all 

about truth and beauty, about getting an answer and knowing that it's 
right." But the looks on his friends '  faces told him that they weren't con­
vinced. 

"For me it's about getting an answer and knowing that it's wrong," 
sighed Gamesh. 

"Math is important because it's true and beautiful," Nabu persisted. 
"Square roots are fundamental for solving equations. They may not be 
much use, but that doesn't matter. They're important for themselves." 

Gamesh was about to say something highly improper when he noticed 
the teacher walking into the classroom, so he covered his embarrassment 
with a sudden attack of coughing. 

"Good morning, boys," said the teacher brightly. 
"Good morning, master." 
"Let me see your homework." 
Gamesh sighed. Humbaba looked worried. Nabu kept his face expres­

sionless. It was better that way. 

Perhaps the most astonishing thing about the conversation upon which 
we have just eavesdropped-leaving aside that it is complete fiction-is 
that it took place around 1 1 00 BeE, in the fabled city of Babylon. 

Might have taken place, I mean. There is no evidence of three boys 
named Nabu, Gamesh, and Humbaba, let alone a record of their conver­
sation. But human nature has been the same for millennia, and the factual 
background to my tale of three schoolboys is based on rock-hard evi­
dence. 
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We know a surprising amount about Babylonian culture because their 
records were written on wet clay in a curious wedge-shaped script called 
cuneiform. When the clay baked hard in the Babylonian sunshine, these 
inscriptions became virtually indestructible. And if the building where the 
clay tablets were stored happened to catch fire, as sometimes happened­
well, the heat turned the clay into pottery, which would last even longer. 

A final covering of desert sand would preserve the records indefinitely. 
Which is how Babylon became the place where written history begins. 
The story of humanity's understanding of symmetry-and its embodi­
ment in a systematic and quantitative theory, a "calculus" of symmetry 
every bit as powerful as the calculus of Isaac Newton and Gottfried Wil­
helm Leibniz-begins here too. No doubt it might be traced back further, 
if we had a time machine or even just some older clay tablets. But as far as 
recorded history can tell us, it was Babylonian mathematics that set hu­
manity on the path to symmetry, with profound implications for how we 
view the physical world. 

Mathematics rests on numbers but is not limited to them. The Babyloni­
ans possessed an effective notation that, unlike our "decimal" system 
(based on powers of ten) , was "sexagesimal" (based on powers of sixty) . 
They knew about right-angled triangles and had something akin to what 
we now call the Pythagorean theorem-though unlike their Greek succes­
sors, the mathematicians of Babylon seem not to have supported their 
empirical findings with logical proofs. They used mathematics for the 
higher purpose of astronomy, presumably for agricultural and religious 
reasons, and also for the prosaic tasks of commerce and taxation. This 
dual role of mathematical thought-revealing order in the natural world 
and assisting in human affairs-runs like a single golden thread through­
out the history of mathematics. 

What is most important about the Babylonian mathematicians is that 
they began to understand how to solve equations. 

Equations are the mathematician's way of working out the value of 
some unknown quantity from circumstantial evidence. "Here are some 
known facts about an unknown number: deduce the number." An equa­
tion, then, is a kind of puzzle, centered upon a number. We are not told 
what this number is, but we are told something useful about it. Our task is 
to solve the puzzle by finding the unknown number. This game may seem 
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somewhat divorced from the geometrical concept of symmetry, but in 
mathematics, ideas discovered in one context habitually turn out to illumi­
nate very different contexts. It is this interconnectedness that gives mathe­
matics such intellectual power. And it is why a number system invented 
for commercial reasons could also inform the ancients about the move­
ments of the planets and even of the so-called fixed stars. 

The puzzle may be easy. "Two times a number is sixty: what is the num­
ber we seek?" You do not have to be a genius to deduce that the unknown 
number is thirty. Or it may be much harder: "I multiply a number by itself 
and add 25: the result is ten times the number. What is the number we 
seek?" Trial and error may lead you to the answer 5-but trial and error is 
an inefficient way to answer puzzles, to solve equations. What if we 
change 25 to 23, for example? Or 26? The Babylonian mathematicians dis­
dained trial and error, for they knew a much deeper, more powerful secret. 
They knew a rule, a standard procedure, to solve such equations. As far as 
we know, they were the first people to realize that such techniques existed. 

The mystique of Babylon stems in part from numerous Biblical refer­
ences. We all know the story of Daniel in the lion's den, which is set in 
Babylon during the reign of King Nebuchadnezzar. But in later times, 
Babylon became almost mythical, a city long vanished, destroyed beyond 
redemption, that perhaps had never existed. Or so it seemed until roughly 
two hundred years ago. 

For thousands of years, strange mounds had dotted the plains of what 
we now call Iraq. Knights returning from the Crusades brought back sou­
venirs dragged from the rubble-decorated bricks, fragments of undeci­
pherable inscriptions. The mounds were clearly the ruins of ancient cities, 
but beyond that, little was known. 

In 1 8 1 1 ,  Claudius Rich made the first scientific study of the rubble 
mounds of Iraq. Sixty miles south of Baghdad, beside the Euphrates, he 
surveyed the entire site of what he soon determined must be the remains 
of Babylon, and hired workmen to excavate the ruins. The finds included 
bricks, cuneiform tablets, beautiful cylinder seals that produced raised 
words and pictures when rolled over wet clay, and works of art so majestic 
that whoever carved them must be ranked alongside Leonardo da Vinci 
and Michelangelo. 
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Even more interesting, however, were the smashed cuneiform tablets 
that littered the sites. We are fortunate that those early archaeologists rec­
ognized their potential value, and kept them safe. Once the writing had 
been deciphered, the tablets became a treasure-trove of information 
about the lives and concerns of the Babylonians. 

The tablets and other remains tell us that the history of ancient 
Mesopotamia was lengthy and complex, involving many different cultures 
and states. It is customary to employ the word "Babylonian" to refer to 
them all, as well as to the specific culture that was centered upon the city 
of Babylon. However, the heart of Mesopotamian culture moved repeat­
edly, with Babylon both coming into, and falling out of, favor. Archaeolo­
gists divide Babylonian history into two main periods. The Old 
Babylonian period runs from about 2000 to 1 600 BeE, and the Neo­
Babylonian period runs from 625 to 539 BeE. In between are the Old As­
syrian, Kassite, Middle Assyrian, and Neo-Assyrian periods, when 
Babylon was ruled by outsiders. Moreover, Babylonian mathematics con­
tinued in Syria, throughout the period known as Seleucid, for another five 
hundred years or more. 

The culture itself was much more stable than the societies in which it 
resided, and it remained mostly unchanged for some 1 200 years, some­
times temporarily disrupted by periods of political upheaval. So any par­
ticular aspect of Babylonian culture, other than some specific historical 
event, probably came into existence well before the earliest known record. 
In particular, there is evidence that certain mathematical techniques, 
whose first surviving records date to around 600 BeE, actually existed far 
earlier. For this reason, the central character in this chapter-an imaginary 
scribe to whom I shall give the name Nabu-Shamash and whom we have 
already met during his early training in the brief vignette about three 
school friends-is deemed to have lived sometime around 1 1 00 BeE, be­
ing born during the reign of King Nebuchadnezzar 1. 

All the other characters that we will meet as our tale progresses were 
genuine historical figures, and their individual s tories are well docu­
mented. But among the million or so clay tablets that have survived from 
ancient Babylon, there is little documented evidence about specific indi­
viduals other than royalty and military leaders. So Nabu-Shamash has to 
be a pastiche based on plausible inferences from what we have learned 
about everyday Babylonian life. No new inventions will be attributed to 
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him, but he  will encounter all those aspects of  Babylonian knowledge that 
play a role in the story of symmetry. There is good evidence that all Baby­
lonian scribes underwent a thorough education, with mathematics as a sig­
nificant component. 

Our imaginary scribe's name is a combination of two genuine Babylon­
ian names, the scribal god Nabu and the Sun god Shamash. In Babylonian 
culture it was not unusual to name ordinary people after gods, though per­
haps two god-names would have been considered a bit extreme. But for 
narrative reasons we are obliged to call him something more specific, and 
more atmospheric, than merely "the scribe." 

When Nabu-Shamash was born, the king of Babylonia was Nebuchad­
nezzar I, the most important monarch of the Second Dynasty of Isin. 
This was not the famous Biblical king of the same name, who is usually re­
ferred to as Nebuchadnezzar II; the Biblical king was the son of Nabopo­
lassar, and he reigned from 605 to 562 BCE. 

Nebuchadnezzar II's reign represented the greatest flowering of Baby­
lon, both materially and in regional power. The city also flourished under 
his earlier namesake, as Babylon's power extended to encompass Akkad 
and the mountainous lands to the north. But Akkad effectively seceded 
from Babylon's control during the reigns of Ahur-resh-ishi and his son 
Tiglath-Pileser I ,  and it strengthened its own security by taking action 
against the mountain and desert tribes that surrounded it on three sides. 
So Nabu-Shamash's life began during a stable period of Babylonian his­
tory, but by the time he became a young man, Babylon's star was begin­
ning to wane, and life was becoming more turbulent. 

Nabu-Shamash was born into a typical "upper-class" household in the 
Old City of Babylon, not far from the Libil-hegalla canal and close to the 
justly famed Ishtar Gate, a ceremonial entrance decorated with colored ce­
ramic bricks in fanciful forms-bulls, lions, even dragons. The road 
through the Ishtar Gate was impressive, reaching a width of 20 meters; it 
was paved with limestone flags on top of a bed of asphalt, with a brick 
foundation. Its name was "May the enemy not have victory"-rather typi­
cal of Babylon's main street names-but it is generally known as the Pro­
cessional Way, being used by the priests to parade the god Marduk 
through the city when ceremony so decreed. 
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The family home was built of mud brick, with walls six feet thick to 
keep out the sun. The external walls had few openings-mainly a doorway 
at street level-and rose to a height of three stories, with lighter materials, 
mainly wood, being used for the top floor. The family owned many slaves, 
who performed routine household tasks. Their quarters, along with the 
kitchen, were to the right of the entrance. The family rooms were to the 
left: a long living room, bedrooms, and a bathroom. There was no bathtub 
in Nabu-Shamash's time, though some have survived from other eras. In­
stead, a slave would pour water over the bather's head and body, approxi­
mating a modern shower. A central courtyard opened to the sky, and 
toward the back were storerooms. 

Nabu-Shamash's father was an official in the court of a king, name un­
known, whose reign preceded Nebuchadnezzar I. His duties were largely 
bureaucratic: he was responsible for administering an entire district, ensur­
ing that law and order were maintained, that the fields were properly irri­
gated, and that all necessary taxes were collected and paid. Nabu­
Shamash's father had also been trained as a scribe, because literacy and 
numeracy were basic skills for anyone in the Babylonian equivalent of the 
civil service. 

A(;cording to a decree attributed to the god Enlil, every man should fol­
low in his father's footsteps, and Nabu-Shamash was expected to do just 
that. However, scribal abilities also opened up other career paths, notably 
that of priest, so his training paved the way to a choice of professions. 

We know what Nabu-Shamash's education was like because extensive 
records, written in Sumerian by people who were trained as scribes, have 
survived from roughly the period concerned. These records make it plain 
that Nabu-Shamash was fortunate in his choice of parentage, for only the 
sons of the well-to-do could hope to enter the scribal schools. In fact, the 
quality of Babylonian education was so high that foreign nobles sent their 
sons to the city to be educated. 

The school was called the Tablet House, presumably referring to the 
clay tablets used for writing and arithmetic. It had a head teacher, referred 
to as the "Expert" and as the "Father of the Tablet House." There was a 
class teacher, whose main task was to make the boys behave themselves; 
there were specialist teachers in Sumerian and mathematics. There were 
prefects, called "Big Brothers," whose job included keeping order. Like all 
students, Nabu-Shamash lived at home and went to school during the day, 
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for around 24  days each 30-day month. He  had three days off for recre­
ation, and a further three for religious festivals. 

Nabu-Shamash began his studies by mastering the Sumerian language, 
especially its written form. There were dictionaries and grammatical texts 
to be studied, and long lists to be copied-legal phrases, technical terms, 
names. Later, he progressed to mathematics, and it was then that his stud­
ies became central to our tale. 

..:;;!.�., •••.
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What did Nabu-Shamash learn? For everyone hut philosophers, logicians, 
and professional mathematicians who are being pedantic, a number is a 
string of digits. Thus the year in which I write this sentence is 2006, a 
string of four digits. But as the pedants will jump to remind us, this string 
of digits is not the number at all but only its notation, and a rather sophis­
ticated form of notation at that. Our familiar decimal system employs just 
ten digits, the symbols 0 through 9, to represent any number, however 
large. An extension of that system also permits the representation of very 
small numbers; more to the point, it permits the representation of numer­
ical measurements to very high levels of precision. Thus the speed of 
light, according to the best current observations, is approximately 
1 86,282.397 miles per second. 

We are so familiar with this notation that we forget how clever it is­
and how difficult to grasp when we first encounter it. The key feature on 
which all else rests is this: the numerical value of a symbol, such as 2, de­
pends on where it is placed relative to the other symbols. The symbol 2 does 
not have a fixed meaning independent of its context. In the number repre­
senting the speed of light, the digit "2" immediately before the decimal 
point does indeed mean "two." But the other occurrence of "2" in that 
number means "two hundred." In the date 2006, that same digit means 
"two thousand." 

We would be exceedingly unhappy to have a system of writing in which 
the meaning of a letter depended on where it occurred in a word. Imagine, 
for instance, what reading would be like if the two a's in "alphabet" had 
totally different meanings. But positional notation for numbers is so con­
venient and powerful that we find it hard to imagine that anyone really 
used any other method. 

It was not always thus. Our present notation dates back no more than 
1 500 years, and was first introduced into Europe a little more than 800 



T H E  S C R I B E S  O F  B A B Y L O N  1 1  

TT < ��TT TT 
2 10 42 120 

T TTT <TT 
60x60+3x60+ 12 = 3,792 

Babylon ian base-60 n u mera l s. 

years ago. Even today, different cultures use different symbols for the 
same decimal digits-look at any Egyptian banknote. But ancient cultures 
wrote numbers in all sorts of strange ways. The most familiar to us is 
probably the Roman system, in which 2006 becomes MMVI. In ancient 
Greek it would be �. In place of our 2, 20, 200, and 2000, the Romans 
wrote II, XX, CC, and MM, and the Greeks wrote 13, K, IT, and 13. 

The Babylonians were the earliest known culture to use something akin 
to our positional notation. But there was one significant difference. In the 
decimal system, every time a digit is moved one place to the left, its nu­
merical value is multiplied by ten. So 20 is ten times 2, and 200 is ten times 
20. In the Babylonian system, each move to the left multiplies a number by 
sixty. So "20" would mean 2 times 60 ( 1 20 in our notation) and "200" 
would mean 2 times 60 times 60 (7200 in our notation) . Of course, they 
didn't use the same "2" symbol; they wrote the number "two" using two 
copies of a tall, thin wedge symbol, as shown in the figure above. Num­
bers from one to nine were written by grouping that many copies of the 
tall wedge. For numbers greater than nine, they added another symbol, a 
sideways wedge, which denoted the number ten, and they used groups of 
these symbols to denote twenty, thirty, forty, and fifty. So, for instance, our 
"42" was four sideways wedges followed by two tall wedges. 

For reasons we can only guess at, this system stopped at 59. The Baby­
lonians did not group six sideways wedges to make 60. Instead, they re­
verted to the tall thin wedge previously used to mean "one," and used it to 
mean "one times sixty." Two such wedges meant 1 20. But they might also 
mean "two." Which meaning was intended had to be inferred from con­
text, and from the position of the symbols relative to each other. For ex­
ample, if there were two tall wedges, a space, and two more tall wedges, 
then the first group meant "one hundred twenty" and the second "two"­
much as the two symbols 2 in our 22 mean twenty and two respectively. 
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This method extended to  much larger numbers. A tall wedge could 
mean 1 ,  or 60, or 60 X 60 = 3,600, or 60 X 60 X 60 = 21 6,000, and so on. 
The three bottom groups in the figure indicate 60 X 60 + 3 X 60 + 1 2, 
which we would write as 3,792. A big problem here is that the notation has 
some ambiguities. If all you see is two tall wedges, does this mean 2, 60 X 
2, or 60 X 60 X 2? Does a sideways wedge followed by two tall ones mean 
1 2  X 60 + 2 or 1 2  X 60 X 60 + 2, or even 1 0  X 60 X 60 + 2 X 60? By 
Alexander the Great's time, the Babylonians had removed these ambigui­
ties by using a pair of diagonal wedges to indicate that no number oc­
curred in a given slot; in effect, they had invented a symbol for zero. 

Why did the Babylonians use this sexagesimal system rather than the fa­
miliar decimal system? They may have been influenced by a useful feature 
of the number 60: its large variety of divisors. It is divisible exactly by the 
numbers 2, 3, 4, 5, and 6. It is also divisible by 1 0, 1 2, 1 5, 20, and 30. This 
feature is rather pleasant when it comes to sharing things, such as grain or 
land, among several people. 

A final feature may well have been decisive: the Babylonian method of 
measuring time. It seems that they found it convenient to divide a year 
into 360 days, although they were excellent astronomers and knew that 
365 was closer, and 365� closer still. The lure of the arithmetical relation­
ship 360 = 6 X 60 was too strong. Indeed, when referring to time, the 
Babylonians suspended the rule that moving symbols one slot to the left 
multiplied their value by sixty, and replaced that by six, so that what should 
have meant 3,600 was actually interpreted as 360. 

This emphasis on 60 and 360 still lingers today, in our use of 360 de­
grees in a full circle-one degree per Babylonian day-and in the 60 sec­
onds in a minute and 60 minutes in an hour. Old cultural conventions 
have incredible staying power. I find it amusing that in this age of spectac­
ular computer graphics, moviemakers still date their creations in Roman 
numerals. 

Nabu-Shamash would have learned all of this, except the "zero" sign, at 
an early stage of his education. He would have become adept at impress­
ing thousands of tiny cuneiform wedges into damp clay at speed. And just 
as today's students grapple with the transition from whole numbers to 
fractions and decimals, Nabu-Shamash would eventually have been faced 
with the Babylonian method for representing numbers like one-half, or 
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one-third, or the more complicated subdivisions of unity dictated by the 
brutal realities of astronomical observations. 

To avoid spending whole afternoons drawing wedges, scholars repre­
sent cuneiform numbers with a mixture of old and new. They write the 
decimal numbers depicted in the successive groups of wedges, using com­
mas to separate them. So the final group in the figure would be written 
1 ,3,1 2. This convention saves a lot of expensive typesetting and is easier 
to read, so we'll go along with the scholars. 

How would a Babylonian scribe have written the number "one-half"? 
In our own arithmetic, we solve this problem two different ways. We ei­

ther write the number as a fraction, lh, or introduce the famous "decimal 
point" and write it as 0 .5 .  The fractional notation is more intuitive and 
came earlier historically; decimal notation is more difficult to grasp, but it 
lends itself better to computation because the symbolism is a natural ex­
tension of the "place-value" rules for whole numbers. The symbol S in 0.5 
means "5 divided by 1 0," and in 0.05 it means "5 divided by 1 00." Moving 
a symbol one place to the left multiplies it by 1 0; moving it one place to 
the right divides it by 1 0. All very sensible and systematic. 

As a result, decimal arithmetic is j ust like whole-number arithmetic, ex­
cept that you have to keep track of where the decimal point goes. 

The Babylonians had the same idea, but in base 60. The fraction Y2 
should be some number of copies of the fraction 1/60. Clearly the right 
number is 30/60, so they wrote "one-half" as 0;30, where scholars use the 
semicolon to denote the "sexagesimal point," which in cuneiform nota­
tion was again a matter of spacing. The Babylonians managed some fairly 
advanced calculations: for example, their value for the square root of 2 
was 1 ;24,5 1 , 10, which differs from the true value by less than one part in a 
hundred thousand. They used this precision to good advantage in both 
theoretical mathematics and astronomy . 

.. :;;.!�., 
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The most exciting technique that Nabu-Shamash would have been 
taught, as far as our central theme of symmetry is concerned, is the solu­
tion of quadratic equations. We know quite a lot about Babylonian meth­
ods for solving equations. Of the roughly one million Babylonian clay 
tablets known to exist, about five hundred deal with mathematics. In 
1 930, the orientalis t  Otto Neugebauer recognized that one of these 
tablets demonstrated a complete understanding of what today we call 
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quadratic equations. These are equations that involve an unknown quan­
tity and its square, together with various specific numbers. Without the 
square, the equation would be called "linear," and such equations are the 
easiest to solve. An equation that involves the cube of the unknown 
(multiply it by itself, then multiply that by the unknown again) is called 
"cubic." The Babylonians seem to have possessed a clever method for 
finding approximate solutions to certain types of cubic equation, based 
on numerical tables. All that we are certain of, however, are the tables 
themselves. We can only infer what they were used for, and cubic equa­
tions are most likely. But the tablets Neugebauer studied make it plain 
that the Babylonian scribes had mastered the quadratic. 

A typical one, which dates back about 4000 years, asks, "Find the side 
of a square if the area minus the side is 1 4,30." This problem involves the 
square of the unknown (the area of the square) as well as the unknown it­
self. In other words, it asks the reader to solve a quadratic equation. The 
same tablet rather offhandedly provides the answer: "Take half of 1 ,  
which is 0;30. Multiply 0;30 by 0;30, which is 0; 1 5 . Add this to 1 4,30 to get 
1 4,30;1 5 .  This is the square of 29;30. Now add 0;30 to 29;30. The result is 
30, the side of the square." 

What's going on here? Let's write the steps in modern notation. 

• Take half of 1 ,  which is 0;30. lh 

• Multiply 0;30 by 0;30, which is 0;1 5. JA 

• Add this to 1 4,30 to get 1 4,30; 1 5 . 870JA 

• This is the square of 29;30. 870JA = (291h) X (29Y2) 

• Now add 0;30 to 29;30. 291h + Y2 

• The result is 30, the side of the square. 30 

The most complicated step is the fourth, which finds a number (it is 
291h) whose square is 870JA. The number 291h is the square root of 870JA. 
Square roots are the main tool for solving quadratics, and when mathe­
maticians tried to use similar methods to solve more complicated equa­
tions, modern algebra was born. 

Later we will interpret this problem using modern algebraic notation. 
But it is important to realize that the Babylonians did not employ an alge-
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braic formula as such. Instead, they described a specific procedure, in the 
form of a typical example, that led to an answer. But they clearly knew 
that exactly the same procedure would work if the numbers were changed 

In short, they knew how to solve quadratics, and their method-though 
not the form in which they expressed it-was the one we use today . 

.. �.!.�., 
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How did the Babylonians discover their method for solving quadratics? 
There is no direct evidence, but it seems likely that they came across it by 
thinking geometrically. Let's take an easier problem that leads to the same 
recipe. Suppose we find a tablet that says, "Find the side of a square if the 
area plus two of the sides is 24." In more modern terms, the square of the 
unknown plus twice the unknown equals 24. We can represent this ques­
tion as a picture: 

D·w = 111111111 
Geometric p icture of a quadratiC equat ion . 

Here the vertical dimension of the square and rectangle to the left of 
the equal sign corresponds to the unknown, and the small squares are of 
unit size. If we split the tall rectangle in half and glue the two pieces onto 
the square, we get a shape like a square with one corner missing. The pic­
ture suggests that we should "complete the square" by adding in the miss­
ing corner (shaded square) to both sides of the equation: 

111111111 
• 

Com plet ing the square. 

Now we have a square on the left and 25 unit squares on the right. Re­
arrange those into a 5 X 5 square: 
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Now the solut ion i s  obvious. 

Thus the unknown plus one, squared, equals five squared. Taking 
square roots, the unknown plus one equals five-and you don't have to be 
a genius to deduce that the unknown is four. 

This geometric description corresponds precisely to the Babylonian 
method for solving quadratics. The more complicated example from the 
tablet uses exactly the same recipe. The tablet only states the recipe and 
doesn't say where it comes from, but the geometric picture fits other cir­
cumstantial evidence. 
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M any of the greatest mathematicians of the ancient world lived in the 
Egyptian city of Alexandria, a city whose origins lie among five sub­
stantial oases to the west of the Nile, out in the Western Desert. One of 
them is Siwa, notable for its salt lakes, which grow during the winter 

and shrink in the summer heat. The salt contaminates the soil and creates 
major headaches for archaeologists because it is sucked up into the ancient 
stone and mud-brick remains and slowly destroys the fabric of the buildings. 

The most popular tourist site in Siwa is Aghurmi, a former temple ded­
icated to the god Amun. So holy was Amun that his main aspect was en­
tirely abstract, but he became associated with a more physical entity, the 
provenance of the god Re, the Sun. Constructed during the 26th Dynasty, 
the temple of Amun at Siwa was the home of a famous oracle that is par­
ticularly associated with two major historical events. 

The first is the destruction of the army of Cambyses II, a Persian king 
who conquered Egypt. It is said that in 523 BCE, planning to use the oracle 
of Amun to legitimate his rule, Cambyses sent a military force into the 
Western Desert. The army reached Bahariya Oasis but was destroyed in a 
sandstorm on its way to Siwa. Many Egyptologists suspect that the "lost 
army of Cambyses" may be mythical, but in 2000 a team from Helwan 
University, looking for oil, found bits of cloth, metal, and human remains 
in the area, and suggested that these might be the remains of the lost army. 

The second event, two centuries later, is historical fact: a fateful visit to 
Siwa by Alexander the Great, who was after exactly the same thing as 
Cambyses. 

1 7  
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Alexander was the son of  King Philip I I  of  Macedon. Philip's daughter 
Cleopatra of Macedon married King Alexander of Epirus, and Philip was 
assassinated during the proceedings. The killer may have been Philip's ho­
mosexual lover Pausanias, who was upset because the king had not done 
anything about some complaint or other that Pausanias had made. Or the 
murder may have been a Persian plot set up by Darius III. If so, it back­
fired, because the Macedonian army immediately proclaimed Alexander 
king, and the 20-year-old monarch famously went on to conquer most of 
the known world. Along the way, in 332 BCE, he conquered Egypt with­
out a fight. 

Intent on cementing this conquest with an endorsement of his creden­
tials as pharaoh, Alexander made a pilgrimage to Siwa to ask the oracle 
whether he was a god. He visited the oracle alone, and on his return an­
nounced its verdict: yes, the oracle had confirmed that he truly was a god. 
This verdict became the primary source of his authority. Later, rumors 
claimed that the oracle had revealed him to be the son of Zeus. 

It is not clear whether the Egyptians were convinced by this rather 
flimsy evidence or whether, given Alexander's control of a substantial 
army, they found it prudent to go along with his story. Perhaps they were 
fed up with the rule of the Persians and considered Alexander the lesser 
of two evils-he had been welcomed with open arms by the former 
Egyptian capital of Memphis for precisely that reason. Whatever the truth 
behind the history, from that time on, the Egyptians venerated Alexander 
as their king. 

On the way to Siwa, fascinated by an area of the country lying between 
the Mediterranean Sea and the lake that came to be known as Mareotis, 
Alexander decided to have a city constructed there. The city, which he 
modestly named Alexandria, was designed by Donocrates, a Greek archi­
tect, after a basic plan sketched by Alexander himself. The city's birth has 
been dated by some to 7 April 331 BCE; this date is disputed by others, 
but it must be close to 334 BCE. Alexander never saw his creation; his 
next visit to the area was to be buried there. 

So, at least, goes the time-honored legend, but the truth is probably 
more complex. It now appears that much of what later became Alexan­
dria already existed when Alexander arrived. Egyptologists discovered 
long ago that many inscriptions are not all that trustworthy. The great 
Temple at Karnak, for instance, is riddled with cartouches of Ramses II. 
But much of it was actually constructed by his father, Seti I, and traces-
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not always faint--of the father's inscriptions can be seen beneath those 
carved for Ramses. Such usurpation was commonplace, and was not even 
considered disrespectful. In contrast, "defacing" a predecessor's reliefs­
hacking out the pharaoh's face-was most definitely disrespectful, inten­
tionally depriving that predecessor of his place in the afterlife by 
destroying his very identity. 

Alexander had his name carved all over the buildings of ancient 
Alexandria. He had his name carved, so to speak, on the city itself. Where 
other pharaohs usurped the odd building or monument, Alexander 
usurped an entire city. 

Alexandria became a major seaport, connected by branches of the Nile 
and a canal to the Red Sea and thence to the Indian Ocean and the Far 
East. It became a center of learning, with a celebrated library. And it was 
the birthplace of one of the most influential mathematicians in history: 
the geometer Euclid. 

We know much more about Alexander than we do about Euclid-even 
though Euclid's long-term influence on human civilization was arguably 
greater. If there can be such a thing as a household name in mathematics, 
"Euclid" is it. Although we know little about Euclid's life, we know a lot 
about his works. For several centuries, mathematics and Euclid were 
pretty much synonymous throughout the Western world. 

Why did Euclid become so well known? There have been greater math­
ematicians, and more significant ones. But for close to two thousand years 
Euclid's name was known to every student of mathematics across the 
whole of Western Europe, and to a lesser extent in the Arab world as well. 
He was the author of one of the most famous mathematics texts ever 
written: the Elements of Geometry (usually shortened to Elements) . When 
printing was invented, this work was among the first books to appear in 
printed form. It has been published in over a thousand different editions, 
a number exceeded only by the Bible. 

We know slightly more about Euclid than we do about Homer. He was 
born in Alexandria around 325 BCE and died in about 265 BCE. 

Having said that, I am uncomfortably aware that I already need to back­
track. That Euclid existed and was sole author of the Elements is only one 
of three theories. The second is that he existed but did not write the Ele­
ments, at least not on his own. He may have been the leader of a team of 
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mathematicians who collectively produced the Elements. The third the­
ory-far more contentious but within the bounds of possibility-is that 
the team existed, but much like the group of mostly French, mostly young 
mathematicians who wrote under the name "Nicolas Bourbaki" in the 
mid-twentieth century, they took "Euclid" as a collective pseudonym. 
Nevertheless, the most likely story seems to be that Euclid existed, that he 
was one person, and that he composed the Elements himself. 

This does not mean that Euclid discovered all of the mathematics con­
tained within his book's pages. What he did was to collect and codify a 
substantial part of ancient Greek mathematical knowledge. He borrowed 
from his predecessors and he left a rich legacy for his successors, but he 
also stamped his own authority on the subject. The Elements is generally 
described as a geometry book, but it also deals with number theory and a 
kind of prototypical algebra-all of it presented in geometrical guise. 

Of Euclid's life we know very little. Later commentators included a few 
snippets of information in their works, none of which modern scholars 
can substantiate. They tell us that Euclid taught in Alexandria, and it is 
usual to infer that he was born in that city, but we don't actually know that. 
In 450 AD, in an extensive commentary on Euclid's mathematics written 
more than seven centuries after his death, the philosopher Proclus wrote: 

Euclid . . .  put together the Elements, arranging in order many of Eu­
doxus's theorems, perfecting many of Theaetetus's, and also bring­
ing to irrefutable demonstration the things which had been only 
loosely proved by his predecessors. This man lived in the time of the 
first Ptolemy; for Archimedes, who followed closely upon the first 
Ptolemy, makes mention of Euclid, and further they say that 
Ptolemy once asked him if there were a shorter way to study geome­
try than the Elements, to which he replied that there was no royal 
road to geometry. He is therefore younger than Plato's circle, but 
older than Eratosthenes and Archimedes;  for these were contempo­
raries, as Eratosthenes somewhere says. In his aim he was a Platonist, 
being in sympathy with this philosophy, whence he made the end of 
the whole Elements the construction of the so-called Platonic figures. 

The treatment of some topics in the Elements provides indirect but 
compelling evidence that Euclid must at some point have been a student 
at Plato's Academy in Athens. Only there, for example, could he have 
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learned about the geometry of Eudoxus and Theaetetus. As for his char­
acter, all we have are some fragments from Pappus, who described him as 
"most fair and well disposed towards all who were able in any measure to 
advance mathematics, careful in no way to give offence, and although an 
exact scholar, not vaunting himself." A few anecdotes survive, such as one 
told by Stobaeus. One of Euclid's s tudents asked him what he would get 
through an understanding of geometry. Euclid called his slave and said, 
"Give him a coin, since he must make a profit from what he learns." 

···· .• t .. •··· 
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The Greek attitude to mathematics was very different from that of the 
Babylonians or the Egyptians. Those cultures saw mathematics largely in 
practical terms-although "practical" could mean aligning shafts through 
a pyramid so that the ka of the dead pharaoh could be launched in the di­
rection of Sirius. For some Greek mathematicians, numbers were not 
tools occasionally employed in support of mystical beliefs, but the very 
core of those beliefs. 

Aristotle and Plato tell of a cult, centered on Pythagoras, that flour­
ished around 550 BeE and that viewed mathematics, especially number, 
as the basis of the whole of creation. They developed mystical ideas about 
the harmony of the universe, based in part on the discovery that harmo­
nious notes on a stringed instrument are related to simple mathematical 
patterns. If a string produces a certain note, a string of half the length 
produces a note one octave higher-the most harmonious of all intervals. 
They investigated various number patterns, in particular polygonal num­
bers, formed by arranging objects in polygonal patterns. For instance, the 
"triangular numbers" 1 ,  3, 6, and 1 0  are formed from triangles, and the 
"square numbers" 1 , 4, 9, and 1 6  are formed from squares: 

1 3 6 1 0  
• •• ••• •••• 

• •• ••• 
• • • 

• 

1 4 9 1 6  
• •• ••• •••• 

•• ••• •••• 
••• •••• 

•••• Triangu lar  a n d  square numbers. 
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Pythagoreanism embraced some nutty numerology-it considered 2 to 
be male and 3 female, for example-but the view that the deep structure of 
nature is mathematical survives today as the basis of most theoretical sci­
ence. Although later Greek geometry was less mystical, the Greeks gener­
ally saw mathematics as an end in itself, more a branch of philosophy than 
a tool. 

There are reasons to believe that this does not tell the whole story. It is 
well established that Archimedes, who may have been a pupil of Euclid's, 
employed his mathematical abilities to design powerful machines and en­
gines of war. There survive a tiny number of intricate Greek mechanisms 
whose cunning design and precision manufacture hint at a well-developed 
tradition of craftsmanship-an ancient version of "applied mathematics." 
Perhaps the best-known example is a machine found in the sea near the 
small island of Antikythera that appears to be a calculating device for as­
tronomical phenomena built from a complex tangle of interlocking cog­
wheels. 

Euclid's Elements certainly fits this rarefied view of Greek mathematics­
possibly because that view is largely based on the Elements. The book's main 
emphasis is on logic and proof, and there is no hint of practical applications. 
The most important feature of the Elements, for our story, is not what it 
contains but what it does not. 

. 
....

.
•

..
..

.. 

).;.� .. 
Euclid made two great innovations. The first is the concept of proof. Eu­
clid refuses to accept any mathematical statement as being true unless it is 
supported by a sequence of logical steps that deduces it from statements 
already known to be true. The second innovation recognizes that the 
proof process must start somewhere, and that these initial statements can­
not be proved. So Euclid states up front five basic assumptions on which 
all his later deductions rest. Four of these are simple and straightforward: 
two points may be joined by a line; any finite line can be extended; a circle 
can be drawn with any center and any radius; all right angles are equal. 

But the fifth postulate is very different. It is long and complicated, and 
what it asserts is not nearly so reasonable and obvious. Its main implica­
tion is the existence of parallel lines-straight lines that never meet, but 
run forever in the same direction, always the same distance apart, like two 
sidewalks on either side of an infinitely long, perfectly straight road. What 
Euclid actually states is that whenever two lines cross a third, the first two 
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i f  these angles add up to 
less than 180 degrees 

"'' ' ' ' ' ' ' ' ' 
" ' '' ' ' '' ' '� 
", ,, ,, , , , , , / " . . . " 

" """ . . . ' ' ' ' ' ' ' ' '. 

then the l i nes, extended 
sufficiently far, must meet 

Euc l id 's fifth postu late. 

lines must meet on whichever side creates two angles that add up to less 
than two right angles. It turns out that this assumption is logically equiva­
lent to the existence of exactly one line parallel to a given line and passing 
through a given point (not on the given line) . 

For centuries the fifth postulate was viewed as a blemish-something 
to be removed by deducing it from the other four, or to be replaced by 
something simpler and just as obvious as the others. By the nineteenth 
century, mathematicians understood that Euclid was absolutely right to in­
clude his fifth postulate, because they could prove that it can't be deduced 
from his other assumptions. 

To Euclid, logical proofs were an essential feature of geometry, and proof 
remains fundamental to the mathematical enterprise. A statement that 
lacks a proof is viewed with suspicion, however much circumstantial evi­
dence seems to favor it and however important its implications may be. 
Physicists, engineers, and astronomers tend to view proofs with disdain, as 
a kind of pedantic appendage, because they have an effective substitute: 
observation. 

For instance, imagine an astronomer trying to calculate the movements 
of the Moon. He will write down mathematical equations that determine 
the Moon's motion, and promptly get stuck because there seems to be no 
way to solve the equations exactly. So the astronomer may tinker with the 
equations, introducing various simplifying approximations. A mathemati­
cian will worry that these approximations might have a serious effect on 
the answer, and will want to prove that they do not cause trouble. The as­
tronomer has a different way to check that what he has done makes sense. 
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He can see whether the motion of  the Moon fits his calculations. If it 
does, that simultaneously justifies the method (because it got the right an­
swer) and verifies the theory (for the same reason) . The logic here is not 
circular because if the method is mathematically invalid, then it will almost 
certainly fail to predict the Moon's motion. 

Without the luxury of observations or experiments, mathematicians 
have to verify their work by its internal logic. The more important the im­
plications of some statement are, the more important it is to make sure 
that the statement is true. So proof becomes even more crucial when the 
statement is something that everyone wants to be true, or that would have 
enormous implications if it were true. 

Proofs cannot rest on thin air, and they cannot trace logical antecedents 
back forever. They have to start somewhere, and where they start will by 
definition be things that have not been-and will not be-proved. Today 
we call these unproved starting assumptions axioms. The axioms for a 
piece of mathematics are the rules of the game. 

Anyone who objects to the axioms can change them if they wish: how­
ever, the result will be a different game. Mathematics does not assert that 
some statement is true: it asserts that if we make various assumptions, then 
the statement concerned must be a logical consequence. This does not im­
ply that the axioms are unchallengeable. Mathematicians may debate 
whether a given axiomatic system is better than another for some purpose, 
or whether the system has any intrinsic merit or interest. But these discus­
sions are not about the internal logic of any particular axiomatic game. 
They are about which games are worthwhile, interesting, or fun. 

The consequences of Euclid's axioms-his long, carefully selected chains 
of logical deductions-are extraordinarily far-reaching. For example, he 
proves-with logic that in his day was considered impeccable-that once 
you agree to his axioms you necessarily must conclude that: 

• The square on the hypotenuse of a right triangle is equal to the sum 
of the squares on the other two sides. 

• There exist infinitely many prime numbers. 

• There exist irrational numbers-not expressible as an exact fraction. 
An example is the square root of two. 
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• There are precisely five regular solids: the tetrahedron, cube, octahe­

dron, dodecahedron, and icosahedron. 

• Any angle can be divided exactly into two equal parts using only 
straightedge and compass. 

• Regular polygons with 3, 4, 5, 6, 8, 10, and 12 sides can be con­
structed exactly using only straightedge and compass. 

I have expressed these "theorems," as we call any mathematical state­
ment that has a proof, in modern terms. Euclid's point of view was rather 

different: he did not work directly with numbers. Everything that we 
would interpret as properties of numbers is stated in terms of lengths, ar­

eas, and volumes. 

The content of the Elements divides into two main categories. There are 
theorems, which tell you that something is true. And there are construc­
tions, which tell you how to do something. 

A typical and justly famous theorem is Proposition 47 of Book I of the 

Elements, usually known as the Pythagorean theorem. This tells us that the 
longest side of a right triangle bears a particular relationship to the other 
two sides. But it does not, without further effort or interpretation, provide 

a method for achieving any goal. 
A construction that will be important in our story is Proposition 9 of 

Book I, where Euclid solves the "bisection problem" for angles. Euclid's 

, _____ this square has 
the same area 

-+----...). as these two 

The Pythagorean theorem. 

squares 
combined 



2 6  W H Y  B E A U T Y  I S  T R U T H  

1 2 3 4 

How to bisect an ang le  with stra ightedge and compass. 

method of bisecting an angle is simple but clever, given the limited tech­
niques available at this early stage of the development. 

Given ( 1 )  an angle between two line segments, (2) place your compass 
tip where the segments meet, and draw a circle, which crosses the seg­
ments at two points, one on each (dark blobs) . Now (3) draw two circles 
of equal radius, one centered at each of the new points. They meet in two 
points (only one is marked) , and (4) the required bisector (dotted) runs 
through both of these. 

By repeating this construction, you can divide an angle into four equal 
pieces, or eight, or sixteen-the number doubles at each step, so we obtain 
the powers of 2, which are 2, 4, 8, 1 6, 32, 64, and so on. 

" :;;,!,,( 
....

..•..
.... 

As I mentioned, the main aspect of The Elements that affects our story is 
not what it contains but what it doesn't. Euclid did not provide any 
method for: 

• Dividing an angle into three exactly equal parts ("trisecting the angle") . 

• Constructing a regular 7 -sided polygon. 

• Constructing a line whose length is equal to the circumference of a 
given circle ("rectifying the circle"). 

• Constructing a square whose area is equal to that of a given circle 
("squaring the circle") . 

• Constructing a cube whose volume is exactly twice that of a given 
cube ("duplicating the cube") . 

It is sometimes said that the Greeks themselves saw these omissions as 
flaws in Euclid's monumental work and devoted a great deal of effort to 





2 8  W H Y  B E A U T Y  I S  T R U T H  

to learn the inherent limitations of  their subject. With the fascinating twist 
that even as they were stating these limitations, they could prove that they 
genuinely were limitations. 

In the hope of avoiding misconceptions, I want to point out some impor­
tant aspects of the trisection question. 

What is required is an exact construction. This is a very strict condition 
within the idealized Greek formulation of geometry, where lines are infi­
nitely thin and points have zero size. It requires cutting the angle into 
three exactly equal parts. Not just the same to ten decimal places, or a hun­
dred or a billion-the construction must be infinitely precise. In the same 
spirit, however, we are allowed to place the compass point with infinite 
precision on any point that is given to us or is later constructed; we can set 
the radius of the compass, with infinite precision, to equal the distance be­
tween any two such points ; and we can draw a straight line that passes ex­
actly through any two such points. 

This is not what happens in messy reality. So is Euclid's geometry use­
less in the real world? No. For instance, if you do what Euclid prescribes 
in Proposition 9, with a real compass on real paper, you get a pretty good 
bisector. In the days before computer graphics, this is how draftsmen bi­
sected angles in technical drawings. Idealization is not a flaw: it is the main 
reason mathematics works at all. Within the idealized model, it is possible 
to reason logically, because we know exactly what properties our objects 
have. The messy real world isn't like that. 

But idealizations also have limitations that sometimes make the model 
inappropriate. Infinitely thin lines do not, for example, work well as 
painted lane markers on roads. The model has to be tailored to an appro­
priate context. Euclid's model was tailored to help us work out the logical 
dependencies among geometrical statements. As a bonus, it may also help 
us understand the real world, but that certainly wasn't central to Euclid's 
thinking. 

The next comment is related, but it points in a rather different direc­
tion. There is no problem finding constructions for trisecting angles ap­
proximately. If you want to be accurate to one percent or one thousandth 
of a percent, it can be done. When the error is one thousandth of the 
thickness of your pencil line, it really doesn't matter for technical drawing. 
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The mathematical problem is about ideal trisections. Can an arbitrary an­
gle be trisected exactly? And the answer is "no." 

It is often said that "you can' t  prove a negative." Mathematicians know 
this to be rubbish. Moreover, negatives have their own fascination, espe­
cially when new methods are needed to prove them. Those methods are 
often more powerful, and more interesting, than a positive solution. When 
someone invents a powerful new method to characterize those things that 
can be constructed using straightedge and compass, and distinguish them 
from those that cannot, then you have an entirely new way of thinking. And 
with that come new thoughts, new problems, new solutions-and new 
mathematical theories and tools. 

No one can use a tool that hasn't been built. You can't call a friend on 
your cell phone if cell phones don't exist. You can't eat a spinach souffle if 
no one has invented agriculture or discovered fire. So tool-building can be 
at least as important as problem-solving. 

The ability to divide angles into equal parts is closely related to something 
much prettier: constructing regular polygons. 

A polygon (Greek for "many angles") is a closed shape formed from 
straight lines. Triangles, squares, rectangles, diamonds like this 0, all are 
polygons. A circle is not a polygon, because its "side" is a curve, not a se­
ries of straight lines. A polygon is regular if all of its sides have the same 
length and if each pair of consecutive sides meet at the same angle. Here 
are regular polygons with 3, 4, 5, 6, 7, and 8 sides: 

6 0 0 0 0 0 
Regu lar  polygons. 

Their technical names are equilateral triangle, square, (regular) penta­
gon, hexagon, heptagon, and octagon. Less elegantly, they are referred to 
as the regular 3-gon, 4-gon, 5-gon, 6-gon, 7 -gon, and 8-gon. This termi­
nology may seem ugly, but when it becomes necessary to refer to the regu­
lar 1 7-sided polygon-as it shortly will-then the term " 1 7-gon" is far 
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more practical than "heptadecagon" o r  "heptakaidecagon." As  for the 
65,537-gon (yes, that too!}-well, you get the picture. 

Euclid and his predecessors must have thought a great deal about 
which regular polygons can be constructed, because he offers construc­
tions for many of them. This turned out to be a fascinating, and decidedly 
tricky, question. The Greeks knew how to construct regular polygons 
when the number of sides is 

3, 4, 5, 6, 8, 1 0, 1 2, 1 5, 1 6, 20. 

We now know that they cannot be constructed when the number of sides is 

7, 9, 1 1 , 1 3, 1 4, 1 8, 1 9 . 

which leaves one number in this range, 1 7, as yet unaccounted for. The 
story of the 1 7  -gon will be told in its rightful place; it is important for 
more reasons than purely mathematical ones. 

In discussing geometry, there is no substitute for drawing on a sheet of 
paper with a real straightedge and real compass. It gives you a feel for how 
the subject fits together. I'm going to take you through my favorite con­
struction, for the regular hexagon. I learned it from a book my uncle gave 
me in the late 1 950s, called Man Must Measure, and it's lovely: 

1 2 3 4 5 

How to construct a regu l a r  hexagon.  

Fix the radius of the compass throughout, so all circles will be of the 
same size. ( 1 )  Draw a circle. (2) Choose a point on it and draw a circle cen­
tered at that point. This crosses the original circle in two new points. (3) 
Draw circles with these points as centers, to get two more crossings. (4) 
Draw circles with these points as centers; both pass through the same new 
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crossing point. The six points can now be connected to form a regular 
hexagon. It is aesthetically pleasing (though mathematically unnecessary) 
to complete the picture with (5) : Draw a circle centered on the sixth point. 
Then six circles meet at the center of the original one, forming a flower 
shape. 

Euclid used a very similar method, which is simpler but not quite so 
pretty, and he proved that it works: you can find it in Proposition 1 5  of 
Book IV. 
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W ake! For the Sun, who scattered into flight 

The Stars before him from the Field if Night, 

Drives Night along with them from Heav'n and strikes 

The Sultan's Turret with a Shaft if Light. 

To most of us, the name of Omar Khayyam is indelibly associated with 
his long ironic poem, the Rubaiyat, and specifically with the elegant trans­
lation into English by Edward Fitzgerald. To historians of mathematics, 
however, Khayyam has a greater claim to fame. He was prominent among 
the Persian and Arab mathematicians who took up the torch that the 
Greeks had dropped, and continued the development of new mathemat­
ics after scholars in Western Europe descended into the dark ages and its 
scholars abandoned theorem-proving for theological disputation. 

Among Khayyam's great achievements is the solution, by respectable 
methods of Greek geometry, of cubic equations. His techniques necessar­
ily went beyond the straightedge and compass that tacitly limit Euclidean 
geometry, because these tools are simply not up to the job-a fact that the 
Greeks strongly suspected, but could not prove because they lacked the 
necessary point of view, which was not geometry but algebra. But 
Khayyam's methods did not go much beyond straightedge and compass. 
He relied on special curves known as "conic sections" because they can be 
constructed by slicing a cone with a plane. 

3 3  
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The conventional wisdom in  popular science writing i s  that every equation 
halves a book's sales. If true, this is very bad news, because nobody would 
be able to understand some of the key themes of this book without being 
shown a few equations. The next chapter, for instance, is about Renais­
sance mathematicians ' discoveries of formulas that solve any cubic or 
quartic equation. I can get away without showing you what the quartic for­
mula looks like, but we really will need to take a quick look at the formula 
for the cubic. Otherwise, all I can tell you is something like "multiply some 
numbers by some other numbers and add some numbers to that, and then 
take the square root, then add another number and take the cube root of 
the result; then do the same thing again with slightly different numbers; fi­
nally, add the two results together. Oh, and I forgot to mention-you have 
to do some dividing as well." 

Some writers have challenged the conventional wisdom and even writ­
ten books about equations. They seem to be following the old showbiz 
saying, "If you've got a wooden leg, wave it." Now, there is a sense in 
which this book is about equations; but just as you can write a book about 
mountains without requiring your readers to climb one, you can write a 
book about equations without requiring your readers to solve one. Still, 
readers of a book about mountains probably won't understand it if they 
have never seen a mountain, so it really will help us both a lot if I show 
you a few carefully selected equations. 

The ground rules, slanted heavily in your favor, are these: The word is 
"show." I want to you to see the equation. You needn't do anything with it. 
When necessary, I will pick the equation to pieces and explain which fea­
tures matter for our story. I will never ask you to solve an equation or cal­
culate with one. And I will do my utmost to avoid them whenever I can. 

When you get to know them, equations are actually rather friendly. 
They are clear, concise, sometimes even beautiful. The secret truth about 
equations is that they are a simple, clear language for describing certain 
"recipes" for calculating things. When I can tell you the recipe in words, or 
just give you enough feel for how it goes that the details don't matter, I 
will . On rare occasions, though, it becomes so cumbersome to use words 
that I'll have to use symbols. 

There are three kinds of important symbols for this book, and I'll men­
tion two of them now. One is our old friend x, "the unknown." This sym­
bol stands for a number that we do not yet know, but whose value we are 
desperately trying to find out. 
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The second type of symbol i s  little raised numbers, like 2 o r  3 o r  4 .  They 
are instructions to multiply some other number by itself the appropriate 
number of times. So 53 means 5 X 5 X 5, which is 1 25, and x! means x X 
x, where x is our symbol for an unknown number. They are read as 
"squared," "cubed," "raised to the fourth power," etc. , and collectively 
they are referred to as powers of the number concerned. 

I haven't the foggiest idea why. They have to be called something. 

�!.;:" 
.
....

.•.•..•. 

Either the Babylonian method for solving quadratic equations was passed 
on to the ancient Greeks, or they reinvented it. Heron, who lived in 
Alexandria somewhere between 1 00 BeE and 1 00, discussed a typical 
Babylonian-style problem in Greek terminology. Around the year 1 00, 
Nichomachus, probably an Arabian hailing from Judea, wrote a book 
called Introductio Arithmetica in which he abandoned the Greek tradition 
of representing numbers by geometrical quantities such as lengths or ar­
eas. To Nichomachus, numbers were quantities in their own right, not 
lengths of lines. Nichomachus was a Pythagorean, and his work shows it: 
he deals only in whole numbers and their ratios, and he uses no symbols. 
His book became the standard arithmetic text for the next millennium. 

Symbolism entered into algebra in the work of a Greek mathematician 
named Diophantus, sometime around 500. The only thing that we know 
about Diophantus is his age at death, and that comes to us via a route of 
dubious authenticity. A Greek collection of algebra problems contains 
one that reads like this: "Diophantus spent one-sixth of his life as a boy. 
His beard grew after a further one-twelfth. He married after another one­
seventh, and his son was born five years later. The son lived to half his fa­
ther's age and the father died four years after the son. How old was 
Diophantus when he died?" 

Using that ancient algebraist's own methods, or more modern ones, you 
can deduce that he must have been 84. It was a good age, assuming the al­
gebra problem is based on fact, which is questionable. 

That's all we know of his life. But we know quite a bit about his books, 
through later copies and references in other documents. He wrote one book 
on polygonal numbers, and part of it survives. It is arranged in Euclidean 
style, proves theorems using logical arguments, and has little mathematical 
significance. Far more significant were the 1 3  books of the Arithmetica. Six 
of them are still in existence, thanks to a thirteenth-century Greek copy of 
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an earlier copy. Four more may have surfaced in a manuscript found in Iran, 
but not all scholars are convinced that it traces back to Diophantus. 

The Arithmetiea is presented as a series of problems. In the preface, 
Diophantus says he wrote it as a book of exercises for one of his students. 
He used a special symbol for the unknown, and different symbols for its 
square and cube that seem to be abbreviations of the words dynamis 
(power) and kybos (cube) . The notation is not very structured. Diophantus 
adds symbols by putting them next to each other (as we now do for multi­
plication) but has a special symbol for subtraction. He even has a symbol 
for equality, though this may have been introduced by later copyists. 

Mostly, the Arithmetiea is about solving equations. The first surviving 
book discusses linear equations; the other five treat various kinds of quad­
ratic equations, often in several unknowns, and a few special cubic equa­
tions. A key feature is that the answers are always integers or rational 
numbers. Today we call an equation "Diophantine" if its solutions are re­
stricted to integers or rational numbers. A typical example from the Arith­
metiea is, "Find three numbers such that their sum, and the sum of any 
two, is a perfect square." Try it-it's by no means easy. Diophantus's an­
swer is 41 , 80, and 320. The sum of all three is 441 = 21 2. The sums of 
pairs are 41 + 80 = 1 21 = 1 1 2, 41 + 320 = 361 = 1 92, and 80 + 320 = 400 
= 202• Clever stuff. 

Diophantine equations are central to modern number theory. A famous 
example is Fermat's "last theorem," which states that two perfect cubes, or 
higher powers, cannot add to form a similar power. With squares, this kind 
of thing is easy, and goes back to Pythagoras : 32 + 42 = 52 or 52 + 1 22 = 1 32. 
But you can't do the same with cubes, fourth powers, fifth powers, or any­
thing higher than the square. Pierre de Fermat scribbled this conjecture 
(without a proof; it wasn't a theorem despite its name) in the margin of his 
personal copy of the Arithmetiea around 1 650. It took nearly 350 years be­
fore Andrew Wiles, a British-born number theorist living in America, 
proved that Fermat was right. 

The historical tradition in mathematics is sometimes very long. 

Algebra really arrived on the mathematical scene in 830, when the main 
action moved from the Greek world to the Arabic one. In that year the as­
tronomer Mohamed ibn Musa al-Khwarizmt wrote a book called af-Jabr 
waf Muqdbafa, which translates roughly as "restoration and simplifica-
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tion." The words refer to standard techniques for manipulating equations 
so as to put them into a better form for solution. From al-jabr comes our 
word "algebra." The first Latin translation in the twelfth century bears the 
title Ludus Algebrae et Almucgrabalaeque. 

AI-Khwarizml's book contains hints of earlier influences, Babylonian 
and Greek, and also rests on ideas introduced in India by Brahmagupta 
around 600. It explains how to solve linear and quadratic equations. AI­
Khwarizml's immediate successors worked out how to solve a few spe­
cial kinds of cubic. Among them are Tabit ibn Qorra, a doctor, 
astronomer, and philosopher who lived in Baghdad and was a pagan, 
and an Egyptian named aI-Hasan ibn al-Haitham, generally referred to 
in later Western writings as Alhazen. But the most famous of them all is 
Omar Khayyam. 

Omar bore the full name Ghiyath aI-Din Abu'l-Fath Umar ibn Ibrahim 
Al-Nisaburi al-Khayyami. The word "al-Khayyami" translates literally as 
"tent-maker," which some scholars believe may have been the trade of his 
father Ibrahim. Omar was born in Persia in 1 047, and spent most of his 
productive life at Naishapur. You can find it in an atlas as Neyshabur, a 
city near Masshad in the Khorosan province of northeastern Iran, close to 
the border with Turkmenistan. 

Legend has it that in his youth, Omar left home to study Islam and the 
Quran under the celebrated cleric Imam Mowaffak, who lived in Naisha­
pur. There he struck up a friendship with two fellow students, Hasan 
Sabah and Nizam al-Mulk, and the three of them made a pact. If any of 
them became rich and famous-not unlikely for students of Mowaffak­
that person would share his wealth and power with the other two. 

The students completed their studies and the years flew by; the pact re­
mained in force. Nizam traveled to Kabul. Omar, politically less ambi­
tious, spent some time as a tent-maker-another possible explanation of 
the name ''AI-Khayyami.'' Science and mathematics became his passions, 
and he spent most of his spare time on them. Eventually Nizam returned, 
secured a position in the government, and became administrator of affairs 
to the sultan Alp Arslan, with an office in Naishapur. 

Since Nizam was now rich and famous, Omar and Hasan claimed their 
rights under the pact. Nizam asked the sultan for permission to assist his 
friends, and when it was granted he honored the agreement. Hasan re­
ceived a well-paid government job, but Omar merely wished to continue 
his scientific studies in Naishapur, where he would pray for the health and 
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well-being of  Nizam. His old school friend arranged for Omar to be given 
a government salary, to free his time for study, and the deal was done. 

Hasan later tried to overthrow a senior official and lost his sinecure, but 
Omar continued serenely on and was appointed to a commission whose 
mandate was to reform the calendar. The Persian calendar was based on the 
movements of the sun, and the date of the first day of the new year was 
subject to change, which was confusing. It was just the job for a competent 
mathematician, and Omar applied his knowledge of mathematics and as­
tronomy to calculate when New Year's Day should fall in any given year. 

Around this time, he also penned the Rubaiyat, which loosely translates 
as "quatrains," a poetic form. A rubai was a four-line verse with a rather 
specific rhyming pattern-more accurately, one of two possible pat­
terns-and a rubaiyat was a collection of verses in this form. One verse 
makes a clear reference to his work on reforming the calendar: 

Ah, but my computations, People sa� 

Reduced the Year to better Reckoning? Nay, 

Twas only strikingfrom the Calendar 

Unborn To-morrow and dead Yesterday. 

Omar's verses were distinctly nonreligious. Many of them praise wine and 
its effects. For instance: 

And lately, by the Tavern Door agape, 

Came shining through the Dusk an Angel Shape 

Bearing a Vessel on his Shoulder; and 

He bid me taste of it; and 'twas-the Grape! 

There are wry allegorical references to wine, as well: 

Whether at Naishdpur or Babylon, 

Whether the Cup with sweet or bitter run, 

The Wine of Life keeps oozing drop by drop, 

The Leaves of Life keep foiling one by one. 

Other verses poke fun at religious beliefs. One wonders what the Sultan 
thought of the man he had put on retainer, and what the imam thought of 
the outcome of his teaching. 
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Meanwhile, the disgraced Hasan, having been forced to leave Naisha­
pur, fell in with a gang of bandits and made use of his superior education 
to become its leader. In the year 1 090 those bandits, under Hasan's com­
mand, captured Alamut castle in the Elburz Mountains, just south of the 
Caspian Sea. They terrorized the region, and Hasan became notorious as 
the Old Man of the Mountains. His followers, known as the Hashishiyun 
for their use of the drug hashish (a very potent form of cannabis) ,  built 
six mountain fortifications, from which they would emerge to kill carefully 
selected religious and political figures. Their name was the origin of the 
word "assassin." So Hasan managed to become rich and famous in his 
own right, as befitted a student of Mowaffak, though he was not, by this 
time, disposed to share his fortune with his old schoolmates. 

While Omar calculated astronomical tables and worked out how to 
solve the cubic, Nizam pursued his political career until, in a touch of ex­
quisite irony, Hasan's bandits assassinated him. Omar lived on to the age 
of 76, dying-so it is said-in 1 1 23. Hasan died the following year, aged 
84. The assassins continued to wreak political havoc until they were wiped 
out by the Mongols, who conquered Alamut in 1 256. 

To return to Omar's mathematics: Around 350 BCE the Greek mathe­
matician Menaechmus discovered the special curves known as "conic sec­
tions," which he used, scholars believe, to solve the problem of doubling 
the cube. Archimedes developed the theory of these curves, and Apollo­
nius of Perga systematized and extended the subject in his book Conic 
Sections. What particularly interested Omar Khayyam was the Greek dis­
covery that conic sections could be used to solve certain cubic equations. 

Conic sections are so named because they can be obtained by slicing a 
cone with a plane. More properly, a double cone, like two ice-cream cones 
joined at their sharp ends. A single cone is formed by a collection of 
straight-line segments, all meeting at one point and passing through a suit­
able circle, the "base" of the cone. But in Greek geometry you can always 
extend straight-line segments as far as you wish, and the result is to create 
a double cone. 

The three main types of conic section are the ellipse, parabola, and hy­
perbola. An ellipse is a closed oval curve that arises when the cutting plane 
passes through only one half of the double cone. (A circle is a special kind 
of ellipse, created when the plane is exactly perpendicular to the cone's 
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Conic sections. 

el l ipse 

hyperbola 

axis.) A hyperbola consists of two symmetrically related open curves, 
which in principle extend to infinity, that arise when the cutting plane 
passes through both halves of the double cone. The parabola is a transi­
tional form, a single open curve, and in this case the cutting plane must be 
parallel to one of the lines lying on the surface of the cone. 

At great distances from the tip of the cone, the curves of a hyperbola 
become ever closer to two straight lines, which are parallel to the lines 
where a parallel plane through the tip would cut the cone. These lines are 
called asymptotes. 

The Greek geometers' extensive studies of conic sections constituted 
their most significant area of progress beyond the ideas codified by Eu­
clid. These curves remain vitally important in today's mathematics, but for 
quite different reasons from those that interested the Greeks. From the al­
gebraic point of view, they are the next simplest curves after the straight 
line. They are also important in applied science. The orbits of planets in 
the solar system are ellipses, as Kepler deduced from Tycho Brahe's obser­
vations of Mars. This elliptical orbit is one of the observations that led 
Newton to formulate his famous "inverse square law" of gravity. This in 
turn led to the realization that some aspects of the universe exhibit clear 
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mathematical patterns. I t  opened up  the whole of  astronomy by making 
planetary phenomena computable. 

The majority of Omar's extant mathematics is devoted to the theory of 
equations. He considered two kinds of solution. The first, following the 
lead of Diophantus, he called an "algebraic" solution in whole numbers; a 
better adjective would be "arithmetic." The second kind of solution he 
called "geometric," by which he meant that the solution could be con­
structed in terms of specific lengths, areas, or volumes by geometrical 
means. 

Making liberal use of conic sections, Omar developed geometric solu­
tions for all cubic equations, and explained them in his Algebra, which he 
completed in 1 079.  Because negative numbers were not recognized in 
those days, equations were always arranged so that all terms were positive. 
This convention led to a huge number of case distinctions, which nowa­
days we would consider to be essentially the same except for the signs of 
the numbers. Omar distinguished fourteen different types of cubic, de­
pending on which terms appear on each side of the equation. Omar's clas­
sification of cubic equations went like this: 

cube = square + side + number 

cube = square + number 

cube = side + number 

cube = number 

cube + square = side + number 

cube + square = number 

cube + side = square + number 

cube + side = number 

cube + number = square + side 

cube + number = square 

cube + number = side 

cube + square + side = number 
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cube + square + number = side 

cube + side + number = square 

Each listed term would have a positive numerical coefficient. 
You may be wondering why this list does not include cases like 

cube + square = side 

The reason is that in these cases we can divide both sides of the equation 
by the unknown, reducing it to a quadratic. 

Omar did not entirely invent his solutions but instead built on earlier 
Greek methods for solving various types of cubic equation using conic 
sections. He developed these ideas systematically, and solved all fourteen 
types of cubic by such methods. Previous mathematicians, he noted, had 
discovered solutions of various cases, but these methods were all very 
special and each case was tackled by a different construction; no one be­
fore him had worked out the whole extent of possible cases, let alone 
found solutions to them. "Me, on the contrary-I have never ceased to 
wish to make known, with exactitude, all of the possible cases, and to dis­
tinguish among each of the cases the possible and impossible ones." By 
"impossible" he meant "having no positive solution." 

To give a flavor of his work, here is how he solved ''A cube, some sides, 
and some numbers are equal to some squares," which we would write as 

xJ + bx + c = ax2• 

(Since we don't care about positive versus negative, we would probably 
move the right-hand term to the other side and change a to -a as well: 
xJ_ ax2 + bx + c = 0) . 

Omar instructs his readers to carry out the following sequence of steps. 
( 1 )  Draw three lines of lengths c/b, JO, and a, with a right angle. (2) Draw 
a semicircle whose diameter is the horizontal line. Extend the vertical line 
to cut it. If the solid vertical line has length d, make the solid horizontal 
line have length cd/$. (3) Draw a hyperbola (solid line) whose asymptotes 
(those special straight lines that the curves approach) are the shaded lines, 
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cd b 

x 

passing through the point just constructed. (4) Find where the hyperbola 
cuts the semicircle. Then the lengths of the two solid lines, marked x, are 
both (positive) solutions of the cubic. 

The details, as usual, matter much less than the overall s tyle. Carry out 
various Euclidean constructions with ruler and compass, throw in a hyper­
bola, carry out some more Euclidean constructions-done. 

Omar gave similar constructions to solve each of his fourteen cases, 
and proved them correct. His analysis has a few gaps: the points required 
in his construction sometimes fail to exist when the sizes of the coeffi­
cients a, b, c are unsuitable. In the construction above, for example, the 
hyperbola may not meet the semicircle at all. But aside from these quib­
bles, he did an impressive and very systematic job. 

Some of the imagery in Omar's poetry is mathematical and seems to al­
lude to his own work, in the self-deprecatory tone that we find throughout: 

For ''Is '' and ''Is-Not, '' though with Rule and Line 

And "Up-And-Down" by logic I define, 

Of all that one should care to fathom, I 

Was never deep in anything but-Wine. 
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One especially striking stanza reads: 

� are no other than a moving row 

Of Magic Shadow-shapes that come and go 

Round with the Sun-illumined Lantern held 

In midnight by the Master of the Show. 

This recalls Plato's celebrated allegory of shadows on a cave wall. It serves 
equally well as a description of the symbolic manipulations of algebra, 
and the human condition. Omar was a gifted chronicler of both. 
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" I swear to you, by God's holy Gospels, and as a true man of honor, 
not only never to publish your discoveries, if you teach me them, 
but I also promise you, and I pledge my faith as a true Christian, to 
note them down in code, so that after my death no one will be able 

to understand them." 
This solemn oath was-allegedly-sworn in 1 539. 
Renaissance Italy was a hotbed of innovation, and mathematics was no 

exception. In the iconoclastic spirit of the age, Renaissance mathemati­
cians were determined to overcome the limitations of classical mathemat­
ics. One of them had solved the mysterious cubic. Now he was accusing 
another of stealing his secret. 

The irate mathematician was Niccolo Fontana, nicknamed "Tartaglia," 
the stammerer. The alleged thief of his intellectual property was a mathe­
matician, a doctor, an incorrigible rogue, and an inveterate gambler. His 
name was Girolamo Cardano, aka Jerome Cardan. Around 1 520, Giro­
lamo, a true prodigal son, had worked his way through his father's legacy. 
Broke, he turned to gambling as a source of finance, putting his mathe­
matical abilities to effective use in assessing the chances of winning. He 
kept dubious company; once, when he suspected another player of cheat­
ing, he slashed the man's face with a knife. 

They were hard times, and Girolamo was a hard man. He was also a 
highly original thinker, and he wrote one of the most famous and influen­
tial algebra texts in history. 

. 
.....•...
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We know a lot about Girolamo because in  1 575 he  told u s  all about him­
self in The Book of My Life. It begins thus: 

This Book of My Life I am undertaking to write after the example of 
Antoninus the Philosopher, acclaimed the wisest and best of men, 
knowing well that no accomplishment of mortal man is perfect, 
much less safe from calumny; yet aware that none, of all ends which 
man may attain, seems more pleasing, none more worthy than recog­
nition of the truth. 

No word, I am ready to affirm, has been added to give savor of 
vainglory, or for sake of mere embellishment; rather, as far as possi­
ble, mere experiences were collected, events of which my pupils . . .  
had some knowledge, or in which they took part. These brief cross­
sections of my history were in turn written down by me in narrative 
form to become this my book. 

Like many mathematicians of the period, Girolamo practiced astrology, 
and he notes the astrological circumstances surrounding his birth: 

Although various abortive medicines-as I have heard-were tried 
in vain, I was normally born on the 24th day of September in the 
year 1 500, when the first hour of the night was more than half run, 
but less than two thirds . . .  Mars was casting an evil influence on 
each luminary because of the incompatibility of their positions, and 
its aspect was square to the moon . 

. . . I could easily have been a monster, except for the fact that the 
place of the preceding conjunction had been 29° in Virgo, over 
which Mercury is the ruler. And neither this planet nor the position 
of the moon or of the ascendant is the same, nor does it apply to the 
second decanate of Virgo; consequently I ought to have been a 
monster, and indeed was so near it that I came forth literally torn 
from my mother's womb. 

So I was born, or rather taken by violent means from my 
mother; I was almost dead. My hair was black and curly. I was re­
vived in a bath of warm wine which might have been fatal to any 
other child. My mother had been in labor for three entire days, and 
yet I survived. 
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One chapter of The Book of My Life lists the books Girolamo wrote, 
and the first on the list is The Great Art, one of three "treatises in mathe­
matics" that he mentions. He also wrote on astronomy, physics, morality, 
gemstones, water, medicine, divination, and theology. 

Only The Great Art plays a part in our tale. Its subtitle, The Rules of Al­
gebra, explains why. In it, Girolamo assembled methods for solving not 
just the quadratic equation, known to the Babylonians, but newly discov­
ered solutions for cubic and quartic equations. Unlike Khayyam's solu­
tions, which depended on the geometry of conics, those in The Great Art 
are purely algebraic. 

Earlier, I mentioned two kinds of mathematical symbol, both of which we 
see in an expression such as x3, for the cube of the unknown. The first kind 
of symbol is the use of letters (x in this case) to stand for numbers--either 
unknown, or known but arbitrary. The second kind uses raised numbers to 
indicate powers-so the superscript 3 here indicates the cube x X x X x. 
Now we come to a third kind of symbol, the last that we will need. 

This third type of symbol is very pretty, and it looks like this: r. This 
symbol means "square root." For instance, ,f), "the square root of nine," 
means the number that when multiplied by itself gives the answer 9. Since 
3 X 3 = 9, we see that ,f) = 3. It's not always that easy, however. The most 
notorious square root, which according to a very unlikely legend caused 
the mathematician who drew attention to it, Hippasus of Metapontum, to 
be thrown overboard from a boat, is the square root of two, f2.. An exact 
expression in decimals has to go on forever. It starts like this: 

1 .4 1421 35623730950488, 

but it can't stop there, because the square of that number is actually 

1 .999999999999999999995223566639074381 44, 

which obviously is not quite the same as 2. 
This time we do know where the symbol came from. It is a distorted 

form of the letter "r," standing for "radix," the Latin for "root." Mathe­
maticians understand it that way and read f2. as "root two." 
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Cube roots, fourth roots, fifth roots, and so  on  are shown by putting a 
small raised number in front of the "root" sign, like this: 

v, \/, r· 

The cube root of a given number is the number that has the given number 
as its cube, and so on. So the cube root of 8 is 2, because 23 = 8. Again, 
the cube root of 2 can be expressed only approximately in decimal nota­
tion. It starts out like this : 

1 .259921 0498948731 648 

and continues, if you have sufficient patience, forever. 
It is this number that turns up in the ancient problem of doubling the 

cube. 

" �.!.{ 
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By the year 400, Greek mathematics was no longer on the cutting edge. 
The action moved east, to Arabia, India, and China. Europe descended 
into the "Dark Ages," and while these were not quite as dark as they have 
often been painted, they were dark enough. The spread of Christianity 
had the unfortunate side effect of concentrating learning and scholarship 
in the churches and monasteries. Many monks copied the works of math­
ematical greats like Euclid, but very few of them understood what they 
were copying. The Greeks could dig a tunnel through a mountain from 
both ends and make it meet in the middle; the early Anglo-Saxon method 
of surveying was to lay out a design, full scale, in a field. Even the notion 
of drawing to scale had been lost. If the Anglo-Saxons had wanted to 
make an accurate map of England, they would have made it the same size 
as England. They did make maps of conventional size, but not very accu­
rate ones. 

By the end of the fifteenth century, the focus of mathematical activity 
was once again swinging back to Europe. As the Middle and Far East ran 
out of creative steam, Europe was getting its second wind, struggling free 
of the embrace of the Church of Rome and its fear of anything new. 
Ironically, the new center of intellectual activity was Italy, as Rome lost its 
grip on its own backyard. 
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This sea  change in  European science and mathematics began with the 
publication, in 1 202, of a book called the Liber Abbaci, written by 
Leonardo of Pisa, who much later was given the nickname Fibonacci­
son of Bonaccio--and is now known by that name even though it was in­
vented in the nineteenth century. Leonardo's father, Guilielmo, was a 
customs officer in Bugia, now Algeria, and in his work must have come 
across people from many cultures. He taught his son the newfangled nu­
merical symbols invented by the Hindus and the Arabs, the forerunners of 
our decimal digits 0 through 9. Leonardo later wrote that he "enjoyed so 
much the instruction that I continued to study mathematics while on busi­
ness trips to Egypt, Syria, Greece, Sicily, and Provence, and there enjoyed 
disputations with the scholars of those places." 

At first sight, the title of Leonardo's book seems to indicate that it is 
about the abacus, a mechanical calculating device using beads that slide on 
wires, or pebbles in a groove in the sand. But just as the Latin word calcu­
lus, referring to one of those small pebbles, later acquired a different and 
more technical meaning, so the word abbaco, the counting frame, came to 
mean the art of computation. The Liber Abbaci was the first arithmetic 
text to bring the Hindu-Arabic symbols and methods to Europe. A large 
part of it is given over to the new arithmetic's applications to practical 
subjects like currency exchange. 

One problem, about an idealized model of the growth of a population 
of rabbits, led to the remarkable sequence of numbers 1 ,  1 ,  2, 3, 5, 8, 1 3, 
21 , 34, 55, and so on, where each number from 2 onward is the sum of the 
preceding two numbers. This "Fibonacci sequence" is Leonardo's greatest 
claim to fame-not for its rabbit-breeding implications, which are nil, but 
for its remarkable mathematical patterns and its key role in the theory of 
irrational numbers. Leonardo could have had no idea that this little jeu 
d'esprit would come to eclipse the entire rest of his life's work. 

Leonardo wrote several other books, and his Practica Geometriae of 
1 220 contained a large part of Euclid, plus some Greek trigonometry. 
Book X of Euclid's Elements discusses irrational numbers composed of 
nested square roots, of the type �a+.J1). Leonardo proved that these irra­
tionals are inadequate for solving cubic equations. This does not imply that 
the roots of the cubic cannot be constructed by ruler and compass, be­
cause other combinations of square roots might yield solutions. But it was 
the first hint that cubics might not be solvable using only Euclid's tools. 
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In 1 494, Luca Pacioli pulled together much existing mathematical 
knowledge in a book on arithmetic, geometry, and proportion. It included 
the Hindu-Arabic numerals, commercial mathematics, a summary of Eu­
clid, and Ptolemy's trigonometry. A running theme was the element of de­
sign in nature, embodied in proportions-the human body, perspective in 
art, the theory of color. 

Pacioli continued the tradition of "rhetorical" algebra, using words 
rather than symbols. The unknown was "thing," the Italian word cosa, 
and for a time, practitioners of algebra were known as "cossists." He also 
employed some standard abbreviations, continuing (but failing to im­
prove on) the approach pioneered by Diophantus. Morris Kline makes a 
telling point in his monumental Mathematical Thought from Ancient to 
Modern Times: "It is a significant commentary on the mathematical de­
velopment of arithmetic and algebra between 1 200 and 1 500 that Paci­
oli's [book] contained hardly anything more than Leonardo of Pisa's 
Liber Abbaci. In fact, the arithmetic and algebra . . .  were based on 
Leonardo's book." 

At the end of his book, Pacioli remarked that solving the cubic was no 
better understood than squaring the circle. But this would soon change. 
The first big breakthrough came about one-third of the way into the six­
teenth century, in the city of Bologna. At first it passed unnoticed. 

�!� 
......•...... 

Girolamo Cardano was the bastard son of a Milan lawyer, Fazio Cardano, 
and a young widow named Chiara Micheria, the mother of three children 
by her former marriage. He was born in Pavia, a town in the duchy of Mi­
lan, in 1 501 . When the plague came to Milan, the pregnant Chiara was per­
suaded to move to the countryside, where she gave birth to Girolamo. Her 
three older children, who had remained behind, all died of the plague. 

According to Girolamo's autobiography, 

my father went dressed in a purple cloak, a garment which was un­
usual in our community; he was never without a small black skullcap 
. . .  From his fifty-fifth year on he lacked all of his teeth. He was well 
acquainted with the works of Euclid; indeed his shoulders were 
rounded from much study . . .  My mother was easily provoked; she 
was quick of memory and wit, and a fat devout little woman. To be 
hasty-tempered was a trait common to both parents. 
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Though a lawyer by profession, Fazio was skilled enough in mathemat­
ics to give advice about geometry to Leonardo da Vinci. He taught geom­
etry at the University of Pavia and at the Piatti Foundation, a Milanese 
institution. And he taught mathematics and astrology to his illegitimate 
son, Girolamo: 

My father, in my earliest childhood, taught me the rudiments of 
arithmetic, and about that time made me acquainted with the arcane; 
whence he had come by this learning I do not know. Shortly after, he 
instructed me in the elements of the astrology of Arabia . . .  After I 
was twelve years old he taught me the first six books of Euclid. 

The child had health problems;  attempts to involve him in the family 
business were not successful. Girolamo managed to persuade his doubt­
ing father to let him study medicine at the University of Pavia. His father 
preferred law. 

In 1 494, Charles VIII of France had invaded Italy, and the ensuing war 
continued sporadically for fifty years. An outbreak of hostilities closed the 
University of Pavia, and Girolamo moved to Padua to continue his stud­
ies. By all accounts he was a first-class s tudent, and when Fazio died, Giro­
lamo was campaigning to become the university's rector. Although many 
people disliked him for speaking his mind, he was appointed by the mar­
gin of a single vote. 

This is when he frittered away his inheritance and turned to gambling, 
which became an addiction for the rest of his turbulent life. And not only 
that: 

At a very early period in my life, I began to apply myself seriously to 
the practice of swordsmanship of every class, until, by persistent 
training, I had acquired some standing even among the most daring 
. . .  By night, even contrary to the decrees of the Duke, I armed my­
self and went prowling about the cities in which I dwelt . . .  I wore a 
black woolen hood to conceal my features, and put on shoes of 
sheep-pelt . . .  often I wandered abroad throughout the night until 
day broke, dripping with perspiration from the exertion of serenad­
ing on my musical instruments. 

It scarcely bears thinking about. 
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Awarded his medical degree in  1 525, Girolamo tried to enter the Col­
lege of Physicians in Milan and was rejected-nominally for illegitimacy 
but in fact, largely because of his notorious lack of tact. So instead of 
joining the prestigious college, Girolamo set himself up as a doctor in the 
nearby village of Sacco. This provided a small income, but the business 
limped along. He married Lucia Bandarini, the daughter of a captain in 
the militia, and moved closer to Milan, hoping to earn more money to 
provide for his family, but again the college turned him down. Unable to 
pursue a legitimate medical career, he reverted to gambling, but even his 
mathematical expertise failed to restore his fortunes: 

Peradventure in no respect can I be deemed worthy of praise; for so 
surely as I was inordinately addicted to the chess-board and the dic­
ing table, I know that I must rather be considered deserving of the 
severest censure. I gambled at both for many years, at chess more 
than forty years, at dice about twenty-five; and not only every year, 
but-1 say it with shame-every day, and with the loss at once of 
thought, of substance, and of time. 

The entire family ended up in the poor house, having long ago pawned 
their furniture and Lucia's j ewelry. "I entered upon a long and honorable 
career. But away with honors and gain, together with vain displays and un­
seasonable delights! I ruined myself! I perished!" 

Their first child arrived: 

After having twice miscarried and borne two males of four months, 
so that I . . .  at times suspected some malefic influence, my wife 
brought forth my first born son . . .  He was deaf in his right ear . . .  
Two toes on his left foot . . .  were joined by one membrane. His back 
was slightly hunched but not to the extent of a deformity. The boy 
led a tranquil existence up to his twenty-third year. After that, he fell 
in love . . .  and married a dowerless wife, Brandonia di Seroni. 

Now Girolamo's late father came to their rescue, in a rather indirect 
manner. Fazio's lecturing post at the university was still open, and Giro­
lamo got the job. He also did a bit of doctoring on the side, despite being 
unlicensed. A number of miraculous cures-probably luck, given the state 
of medicine in that period-gave him a high reputation. Even some 
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members of the college took their medical problems to  him, and for a 
while it looked as though he might finally gain entrance to that esteemed 
institution. But once again, Girolamo's tendency to speak his mind scup­
pered that; he published a vitriolic attack on the abilities and character of 
the college's membership. Girolamo was aware of his lack of tact but ap­
parently did not see it as a fault: "As a lecturer and debater, I was much 
more earnest and accurate than in exercising prudence." In 1 537 his lack 
of prudence caused his latest application to be turned down. 

But his reputation was becoming so great that the college eventually 
had no real choice, and he was made a member two years later. Things 
were looking up; all the more so when he published two books about 
mathematics. Girolamo's career was advancing on several fronts. 
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Around this time, Tartaglia made a major breakthrough-a solution to a 
broad class of cubic equations. After some persuasion, and with reluc­
tance, he confided his epic discovery to Cardano. It is hardly surprising 
that six years later, when he received a copy of Cardano's algebra text The 
Great Art, or on the Rules of Algebra and found a complete exposition of 
his secret, Tartaglia was incensed. 

Cardano had not stolen the credit, for he gave full acknowledgment to 
Tartaglia: 

In our own days Scipione del Ferro of Bologna has solved the case 
of the cube and first power equal to a constant, a very elegant and 
admirable accomplishment . . .  In emulation of him, my friend Nic-
colo Tartaglia of Brescia . . .  solved the same case when he got into a 
contest with his [del Ferro's] pupil Antonio Maria Fior, and moved 
by my many entreaties, gave it to me. 

Nonetheless, it was galling for Tartaglia to see his precious secret given 
away to the world, and even more galling to recognize that many more 
people would remember the author of the book than the erstwhile secret's 
true discoverer. 

That, at least, was Tartaglia's view of the affair, which constitutes al­
most all of the existing evidence. As Richard Witmer points out in his 
translation of The Great Art, "We are dependent almost exclusively on 
Tartaglia'S printed accounts, which by no stretch of the imagination can be 
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regarded a s  objective." One of  Cardano's servants, Lodovico Ferrari, later 
claimed to have been present at the meeting and said that there had been 
no agreement to keep the method secret. Ferrari later became Cardano's 
student, and he solved-or helped to solve-the quartic, so he cannot be 
considered a more objective witness than Tartaglia. 

What made matters worse for poor Tartaglia was that it wasn't just a 
case of lost credit. In Renaissance Europe, mathematical secrets could be 
translated into hard cash. Not just through gambling, Cardano's preferred 
route, but through public competitions. 

It is often said that mathematics is not a spectator sport, but that was 
not true in the 1 500s. Mathematicians made reasonable livings by chal­
lenging each other to public contests, in which each would set his oppo­
nent a series of problems, and whoever got the most answers right was 
the winner. These spectacles were less thrilling than bare-hands fighting or 
swordplay, but onlookers could place wagers and find out which contest­
ant won, even if they had no idea how he did it. In addition to the prize 
money, winners attracted pupils, who would pay for tuition, so the public 
competitions were doubly lucrative. 

'�!"( 
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Tartaglia was not the first to find an algebraic solution to a cubic equation. 
The Bolognese professor Scipione del Ferro discovered his solution of 
some types of cubic somewhere around 1 5 1 5. He died in 1 526, and both 
his papers and his professorship were inherited by his son-in-law, Anni­
bale del Nave. We can be sure of this because the papers themselves came 
to light in the University of Bologna library around 1 970, thanks to the ef­
forts of E. Bartolotti. According to Bartolotti, del Ferro probably knew 
how to solve three types of cubic, but he passed on the method for solv­
ing only one type: cube plus thing equals number. 

Knowledge of this solution was preserved by del Nave and by del 
Ferro's student Antonio Maria Fior. And it was Fior, determined to set 
himself up in business as a mathematics teacher, who came up with an ef­
fective marketing technique. In 1 535 he challenged Tartaglia to a public 
cubic-solving contest. 

There were rumors that a method for solving cubics had been found, 
and nothing encourages a mathematician more than the knowledge that a 
problem has a solution. The risk of wasting time on an unsolvable prob­
lem is ruled out; the main danger is that you may not be clever enough to 
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find an answer you know must exist. All you need i s  lots o f  confidence, 
which mathematicians seldom lack-even if it turns out to be misplaced. 

Tartaglia had rediscovered del Ferro's method, but he suspected that 
Fior also knew how to solve other types of cubic and would thus have a 
huge advantage. Tartaglia tells us how much this prospect worried him, 
and how he finally cracked the remaining case shortly before the contest. 
Now Tartaglia had the advantage, and he promptly wiped out the unlucky 
Fior. 

Word of the defeat spread; Cardano heard of it in Milan. At that time 
he was working on his algebra text. Like any true author, Cardano was de­
termined to include the latest discoveries, for without them his book 
would be obsolete before it was even published. So Cardano approached 
Tartaglia, hoping to wheedle the secret out of him and put it in The Great 
Art. Tartaglia refused, saying that he intended to write his own book. 

Eventually, however, Cardano's persistence paid off, and Tartaglia di­
vulged the secret. Did he really make Cardano swear to keep it hidden, 
knowing that a textbook was in the offing? Or did he succumb to Car­
dano's blandishments and then regret it? 

There is no doubt that he was extremely angry when The Great Art ap­
peared. Within a year he had published a book, Diverse Questions and In­
ventions, which laid into Cardano in no uncertain terms. He included all of 
the correspondence between them, supposedly exactly as written. 

In 1 574, Ferrari came to the support of his master by issuing a 
cartello--a challenge to a learned dispute on any topic Tartaglia cared to 
name. He even offered a prize of 200 scudi for the winner. And he made 
his opinions very clear: "This I have proposed to make known, that you 
have written things which falsely and unworthily slander . . .  Signor Giro­
lamo, compared to whom you are hardly worth mentioning." 

Ferrari sent copies of the cartello to numerous Italian scholars and pub­
lic figures. Within nine days, Tartaglia responded with his own statement 
of facts, and the two mathematicians ended up by exchanging twelve 
cartelli between them over a period of eighteen months. The dispute 
seems to have followed the standard rules for a genuine duel. Tartaglia, 
who had been insulted by Ferrari, was allowed the choice of weapons­
the selection of topics to be debated. But he kept asking to debate Car­
dano rather than his challenger, Ferrari. 

Ferrari kept his temper under control and pointed out that in any case it 
had been del Ferro, not Tartaglia, who had solved the cubic to begin with. 
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Since del Ferro had made no  fuss  about Tartaglia's unjustified claim of 
credit, why wasn't Tartaglia willing to behave likewise? It was a good point, 
and Tartaglia may have recognized that, because he considered withdrawing 
from the contest. However, he didn't, and one possible reason was the city 
fathers of Brescia, his hometown. Tartaglia was after a lectureship there, 
and the local dignitaries may have wanted to see how he acquitted himsel£ 

At any rate, Tartaglia agreed to the debate, which was held in a Milanese 
church before large crowds in August 1 548. No record of the proceedings 
is known, save for a few indications by Tartaglia, who said that the meet­
ing ceased when suppertime approached. This hints that the debate may 
not have been especially gripping. It seems, though, that Ferrari won 
handily, because afterward he was offered some plum positions, accepted 
the post of tax assessor to the governor of Milan, and soon became very 
rich. Tartaglia, on the other hand, never claimed to have won the debate, 
failed to get the Brescia job, and descended into bitter recrimination. 

Unknown to Tartaglia, Cardano and Ferrari had an entirely different 
line of defense, for they had visited Bologna and inspected del Ferro's pa­
pers. These included the first genuine solution of the cubic, and in later 
years they both insisted that the source of the material included in The 
Great Art was del Ferro's original writings, not Tartaglia's confidence to 
Cardano. The reference to Tartaglia was included merely to record how 
Cardano himself heard of del Ferro's work. 

There is a final twist to the tale. Soon after the second edition of The 
Great Art was published, in 1 570, Cardano was imprisoned by the Inquisi­
tion. The reason may have been something that had previously seemed 
entirely innocent: not the content of the book, but its dedication. Cardano 
had chosen to dedicate it to the relatively obscure intellectual Andreas Os­
iander, a minor figure in the Reformation but one strongly suspected of 
being the author of an anonymous preface to Nicolaus Copernicus's On 
the Revolutions of the Heavenly Spheres, the first book to propose that the 
planets go around the Sun, not the Earth. The Church considered this 
view heretical, and in 1 600 it burned Giordano Bruno alive for maintain­
ing it-hanging him upside down from a stake, naked and gagged, in a Ro­
man market square. In 1 6 1 6, and again in 1 633, it gave Galileo a lot of 
grief, for the same reason, but by then the Inquisition was content to put 
him under house arrest. 
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To appreciate what Girolamo and his compatriots achieved, we must re­
visit the Babylonian tablet that explains how to solve quadratics. If we fol­
low the recipe and express the calculation steps in modern symbolism, we 
see that in effect the Babylonian scribe was saying that the solution to a 
quadratic equation x2  - ax = b is 

This is equivalent to the formula that every school student used to learn 
by heart, and that nowadays is found in every formula book. 

The Renaissance solution of the cubic equation is similar but more 
elaborate. In modern symbols it looks like this: Suppose that x3 + ax = b. 
Then 

3 b Va3 b2 V b Va3 b2 x = 2" + 27 + "4 + 2" - 27 + "4 

As formulas go, this one is relatively simple (believe mel), but you need to 
develop a lot of algebraic ideas before it can be so described. It is by far 
the most complicated formula we will look at, and it uses all three types of 
symbol that I have introduced: letters, raised numbers, and the r sign, as 
well as both square roots and cube roots. You don't need to understand 
this formula, and you certainly don't need to calculate it. But you need to 
appreciate its general shape. First, some terminology that will prove very 
useful as we proceed. 

An algebraic expression like 2x4 - 7 x3 - 4x2 + 9 is called a polynomial, 
which means "many terms." Such expressions are formed by adding vari­
ous powers of the unknown. The numbers 2, -7, -4, and 9, which multi­
ply the powers, are called coefficients. The highest power of the unknown 
that occurs is called the degree of the polynomial, so this polynomial has 
degree 4. There are special names for polynomials of low degree ( 1  
through 6) : linear, quadratic, cubic, quartic, quintic, and sextic. The solu­
tions of the associated equation 2x4 - 7 x3 - 4x2 + 9 = 0 are called the roots 
of the polynomial. 

Now we can dissect Cardano's formula. It is built from the coefficients 
a and b, employing some additions, subtractions, multiplications, and divi­
sions (but only by certain integers, namely 2, 4, and 27) . The esoteric as­
pects are of two kinds: There is a square root-in fact the same square 
root occurs in two places, but one is added while the other is subtracted. 
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Finally, there are two cube roots, and these are the cube roots of  quantities 
that involve the square roots. So aside from harmless operations of alge­
bra (by which I mean those that merely shuffle the terms around) , the 
skeleton of the solution is, "Take a square root, then a cube root; do this 
again; add the two." 

That's all we will need. But I don't think we can get away with less. 
What the Renaissance mathematicians initially failed to grasp, but 

later generations soon realized, is that this formula is not just a solution 
to one type of cubic. It is a complete solution to all types, give or take 
some straightforward algebra. For a start, if the cube term is, say, 5.0 in­
stead of J2, you can j ust divide the entire equation by 5-the Renais­
sance mathematicians were certainly smart enough to spot that. A more 
subtle idea, which required a quiet revolution in how we think of num­
bers, is that by allowing the coefficients a and b to be negative if neces­
sary, we can avoid fruitless  distinctions among cases. Finally, there is a 
purely algebraic trick: if the equation involves the square of the un­
known, you can always get rid of it-you replace x by x plus a carefully 
chosen constant, and if you do it right, the square term miraculously dis­
appears. Again, it helps here if you stop worrying whether numbers are 
positive or negative. Finally, the Renaissance mathematicians worried 
about terms that were entirely missing, but to modern eyes the remedy is 
obvious: such a term is not actually missing, it just has coefficient zero. 
The same formula works. 

Problem solved? 
Not quite. I lied. 
Here is where I lied. I said that Cardano's formula solves all cubics. 

There is a sense in which that's not true, and it turned out to be important. 
I didn't tell a very bad lie, though, because it all depends on what you 
mean by "solve." 

Cardano himself spotted the difficulty, which says a lot for his attention 
to detail. Cubics typically have either three solutions (fewer if we exclude 
negative numbers) or one. Cardano noticed that when there are three so­
lutions-say 1 ,  2, and 3-the formula does not seem to yield those solu­
tions in any sensible way. Instead, the square root in the formula contains 
a negative number. 
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Specifically, Cardano noted that the cubic r = 1 5x + 4 has the obvious 
solution x = 4. But when he tried out Tartaglia's formula, it led to the 
"answer" 

x =  V 2 +�-1 2i + V 2 -�-1 21 

which seemed meaningless. 
Among European mathematicians in those days, few brave souls were 

willing to contemplate negative numbers. Their Eastern counterparts had 
come to terms with negative quantities much earlier. In India, the Jains de­
veloped a rudimentary concept of negative quantities as early as 400, and 
in 1 200 the Chinese system of "counting rods" used red rods for positive 
numbers and black rods for negative ones-though only in certain limited 
contexts. 

If negative numbers were a puzzle, their square roots had to be even 
more baffling. The difficulty is that the square of either a positive or a 
negative number is always positive-I won't explain why here, but it is 
the only choice that makes the laws of algebra work consistently. So 
even if you are happy using negative numbers, it seems that you have to 
accept that they cannot have sensible square roots. Any algebraic expres­
sion involving the square root of a negative quantity must therefore be 
nonsense. 

And yet Tartaglia's formula led Cardano to just such an expression. It 
was worrying in the extreme that in cases in which you knew the solution 
by some other route, the formula seemed not to produce it. 

In 1 539 a worried Cardano raised the matter with Tartaglia: 

I have sent to enquire after the solution to various problems for 
which you have given me no answer, one of which concerns the 
cube equal to an unknown plus a number. I have certainly grasped 
this rule, but when the cube of one-third of the coefficient of the 
unknown is greater in value than the square of one-half of the num­
ber, then, it appears, I cannot make it fit into the equation. 

Here Cardano is describing exactly the condition for the square root to 
be that of a negative number. It is clear that he had an excellent grasp of 
the whole business and had spotted a snag. It is less clear whether 
Tartaglia had a comparable level of understanding of his own formula, 
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because his response was, "you have not mastered the true way of  solving 
problems of this kind . . .  Your methods are totally false." 

Possibly Tartaglia was merely being deliberately unhelpful. Or possibly 
he did not see what Cardano was getting at. At any rate, Cardano had put 
his finger on a puzzle that would exercise the combined intellects of the 
world's mathematicians for the next 250 years. 

Even in Renaissance times, there were hints that something important 
might be going on. The same issue arose in another problem discussed in 
The Great Art, to find two numbers whose sum is 1 0  and whose product is 
40. This led to the "solution" 5 + �-1 5 and 5 - FfS. Cardano noticed 
that if you ignored the question of what the square root of minus fifteen 
meant, and just pretended it worked like any other square root, then you 
could check that these "numbers" actually fit the equation. When you 
added them, the square roots canceled out, and the two 5's added to 1 0, as 
required. When you multiplied them, you got 52 - (FfS)2, which equals 25 
+ 1 5, which is 40. Cardano did not know what to make of this strange cal­
culation. "So," he wrote, "progresses arithmetic subtlety, the end of which 
is as refined as it is useless." 

In his Algebra of 1 572, Rafaele Bombelli, the son of a Bolognese wool 
merchant, noticed that similar calculations, manipulating the "imaginary" 
roots as if they were genuine numbers, could convert the weird formula 
for Cardano's puzzling cubic into the correct answer, x = 4. He wrote the 
book to fill in some spare time while he was reclaiming marshland for the 
Apostolic Camera, the Pope's legal and financial department. Bombelli 
noticed that 

(2 + F lY = 2 + �-1 21 

and 

(2 - RP = 2 - �-1 21 

so the sum of the two strange cube roots becomes 

(2 + R) + (2 - Ff) 
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which equals 4 .  The meaningless root was somehow meaningful, and it 
gave the right answer. Bombelli was probably the first mathematician to 
realize that you could carry out algebraic manipulations with square roots 
of negative numbers and get usable results. This was a big hint that such 
numbers had a sensible interpretation, but it didn't seem to indicate what 
that interpretation was. 

..�.!,., 
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The mathematical high point of Cardano's book was not the cubic but the 
quartic. His student Ferrari managed to extend Tartaglia and del Ferro's 
methods to equations that contain the fourth power of the unknown. Fer­
rari's formula involves only square roots and cube roots-a fourth root is 
just the square root of a square root, so those are not needed. 

The Great Art does not include a solution of the quintic equation, in 
which the unknown appears to the fifth power. But as the degree of the 
equation increases, the method for solving it gets more and more compli­
cated, so few doubted that with enough ingenuity, the quintic too could be 
solved-you probably had to use fifth roots, and any formula would be 
really messy. 

Cardano did not spend time seeking such a solution. After 1 539 he re­
turned to his numerous other activities, especially medicine. And now his 
family life fell apart in the most horrific manner: "My [youngest] son, be­
tween the day of his marriage and the day of his doom, had been accused 
of attempting to poison his wife while she was still in the weakness atten­
dant upon childbirth. On the 1 7th day of February he was apprehended, 
and fifty-three days after, on April 1 3th, he was beheaded in prison." 
While Cardano was still trying to come to terms with that tragedy, the hor­
ror got worse. "One house-mine-witnessed within the space of a few 
days, three funerals, that of my son, of my little granddaughter, Diaregina, 
and of the baby's nurse; nor was the infant grandson far from dying." 

For all that, Cardano was incurably optimistic about the human condi­
tion: "Nevertheless, I still have so many blessings, that if they were an­
other's he would count himself lucky." 
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W hich road to take? Which subject to study? He loved them both, 
but he must choose between them. It was a terrible dilemma. The 
year was 1 796, and a brilliant 1 9-year-old youth was faced with a 
decision that would affect the rest of his life. He had to decide on a 

career. Although he came from an ordinary family, Carl Friedrich Gauss 
knew that he could rise to greatness. Everyone recognized his ability, in­
cluding the duke of Brunswick, in whose domain Gauss had been born 
and where his family lived. His problem was that he had too much ability, 
and he was forced to choose between his two great loves :  mathematics 
and linguistics. 

On 30 March, however, the decision was taken out of his hands by a 
curious, remarkable, and totally unprecedented discovery. On that day, 
Gauss found a Euclidean construction for a regular polygon with seven­
teen sides. 

This may sound esoteric, but there was not even a hint of it in Euclid. 
You could find methods for constructing regular polygons with three 
sides, or four, or five, or six. You could combine the constructions for 
three and five sides to get fifteen, and repeated bisections would double 
the number of sides, leading to eight, ten, twelve, sixteen, twenty, . . .  

But seventeen was crazy. It was also true, and Gauss knew full well why 
it was true. It all boiled down to two simple properties of the number 1 7 . 
It is a prime number-its only exact divisors are itself and 1 .  And it is one 
greater than a power of two: 1 7  = 1 6  + 1 = 24 + 1 .  

If you were a genius like Gauss, you could see why those two unassum­
ing statements implied the existence of a construction, using straightedge 
and compass, of the regular seventeen-sided polygon. If you were any of 

6 3  
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the other great mathematicians who had lived between 500 BCE and 
1 796, you would not even have got a sniff of any connection. We know 
this because they didn't. 

If Gauss had needed confirmation of his mathematical talent, he cer­
tainly had it now. He resolved to become a mathematician. 

The Gauss family had moved to Brunswick in 1 740 when Carl's grandfa­
ther took a job there as a gardener. One of his three sons, Gebhard Diet­
rich Gauss, also became a gardener, occasionally working at other laboring 
jobs such as laying bricks and tending canals; at other times he was a "mas­
ter of waterworks," a merchant's assistant, and the treasurer of a small in­
surance fund. The more profitable trades were all controlled by guilds, and 
newcomers-even second-generation newcomers-were denied access to 
them. Gebhard married his second wife, Dorothea Benze, a stonemason's 
daughter working as a maid, in 1 776. Their son Johann Friederich Carl 
{who later always called himself Carl Friedrich} was born in 1 777. 

Gebhard was honest but obstinate, ill-mannered, and not very bright. 
Dorothea was intelligent and self-assertive, traits that worked to Carl's ad­
vantage. By the time the boy was two, his mother knew she had a prodigy 
on her hands, and she set her heart on ensuring that he received an educa­
tion that would allow his talents to flourish. Gebhard would have been 
happier if Carl had become a bricklayer. Thanks to his mother, Carl rose 
to fulfill the prediction that his friend, the geometer Wolfgang Bolyai, 
made to Dorothea when her son was 1 9, saying that Carl would become 
"the greatest mathematician in Europe." She was so overjoyed that she 
burst into tears. 

The boy responded to his mother's devotion, and for the last two de­
cades of her life she lived with him, her eyesight failing until she became 
totally blind. The eminent mathematician insisted on looking after her 
himself, and he nursed her until 1 839, when she died. 

Gauss showed his talents early. At the age of three, he was watching his 
father, at that point a foreman in charge of a gang of laborers, handing 
out the weekly wages. Noticing a mistake in the arithmetic, the boy 
pointed it out to the amazed Gebhard. No one had taught the child num­
bers. He had taught himself. 

A few years later, a schoolmaster named J. G. Buttner set Gauss's class a 
task that was intended to occupy them for a good few hours, giving the 
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teacher a well-earned rest. We don't know the exact question, but i t  was 
something very similar to this : add up all of the numbers from 1 to 1 00. 
Most likely, the numbers were not as nice as that, but there was a hidden 
pattern to them: they formed an arithmetic progression, meaning that the 
difference between any two consecutive numbers was always the same. 
There is a simple but not particularly obvious trick for adding the num­
bers in an arithmetic progression, but the class had not been taught it, so 
they had to laboriously add the numbers one at a time. 

At least, that's what Buttner expected. He instructed his pupils that as 
soon as they had finished the assignment, they should place their slate, 
with the answer, on his desk. While his fellow students sat scribbling 
things like 

1 + 2 = 3  

3 + 3 = 6  

6 + 4 = 1 0 

with the inevitable mistake 

1 0  + 5 = 1 4  

and running out o f  space t o  write in, Gauss thought for a moment, 
chalked one number on his slate, walked up to the teacher, and slapped the 
slate face down on the desk. 

"There it lies," he said, went back to his desk, and sat down. 
At the end of the lesson, when the teacher collected all the slates, pre­

cisely one had the correct answer: Gauss's. 
Again, we don't know exactly how Gauss's mind worked, but we can 

come up with a plausible reconstruction. In all likelihood, Gauss had already 
thought about sums of that kind and spotted a useful trick. (If not, he was 
entirely capable of inventing one on the spot.) An easy way to find the an­
swer is to group the numbers in pairs: 1 and 1 00, 2 and 99, 3 and 98, and so 
on, all the way to 50 and 5 1 .  Every number from 1 to 1 00 occurs exactly 
once in some pair, so the sum of all those numbers is the sum of all the 
pairs. But each pair adds up to 1 01 .  And there are 50 pairs. So the total is 
50 X 1 01 = 5050. This (or some equivalent) is what he chalked on his slate. 
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The point of  this tale i s  not that Gauss was unusually good a t  arith­
metic, though he was; in his later astronomical work he routinely carried 
out enormous calculations to many decimal places, working with the 
speed of an idiot savant. But lighting calculation was not his sole talent. 
What he possessed in abundance was a gift for spotting cryptic patterns in 
mathematical problems, and using them to find solutions. 

Buttner was so astonished that Gauss had seen through his clever ploy 
that, to his credit, he gave the boy the best arithmetic textbook that money 
could buy. Within a week, Gauss had gone beyond anything his teacher 
could handle. 

It so happened that Buttner had a 1 7-year-old assistant, Johann Bartels, 
whose official duties were to cut quills for writing and to help the boys use 
them. Unofficially, Bartels had a fascination for mathematics. He was 
drawn to the brilliant ten-year old, and the two became lifelong friends. 
They worked on mathematics together, each encouraging the other. 

Bartels was on familiar terms with some of the leading lights of 
Brunswick, and they soon learned that there was an unsung genius in their 
midst, whose family lived on the brink of poverty. One of these gentle­
men, councilor and professor E. A. W. Zimmerman, introduced Gauss to 
the duke of Brunswick, Carl Wilhelm Ferdinand, in 1 79 1 . The duke, 
charmed and impressed, took it upon himself to pay for Gauss's educa­
tion, as he occasionally did for the talented sons of the poor. 

Mathematics was not the boy's sole talent. By the age of 1 5  he had be­
come proficient in classical languages, so the duke financed studies in clas­
sics at the local gymnasium. (In the old German educational system, a 
gymnasium was a type of school that prepared its pupils for university en­
trance. It translates roughly as "high school," but only paying students 
were admitted.) Many of Gauss's best works were later written in Latin. In 
1 792, he entered the Collegium Carolinium in Brunswick, again at the 
duke's expense. 

By the age of 1 7  he had already discovered an astonishing theorem 
known as the "law of quadratic reciprocity" in the theory of numbers. It 
is a basic but rather esoteric regularity in divisibility properties of perfect 
squares. The pattern had already been noticed by Leonhard Euler, but 
Gauss was unaware of this and made the discovery entirely on his own. 
Very few people would even have thought of asking the question. And the 
boy was thinking very deeply about the theory of equations. In fact, that 
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was what led him to his construction of  the regular 1 7  -gon and thus set 
him on the road to mathematical immortality. 

Between 1 795 and 1 798, Gauss studied for a degree at the University of 
G6ttingen, once more paid for by Ferdinand. He made few friends, but 
the friendships he did strike up were deep and long-lasting. It was at G6t­
tingen that Gauss met Bolyai, an accomplished geometer in the Euclidean 
tradition. 

Mathematical ideas came so thick and fast to Gauss that sometimes 
they seemed to overwhelm him. He would suddenly cease whatever he 
was doing and stare blankly into the middle distance as a new thought 
struck him. At one point he worked out some of the theorems that would 
hold "if Euclidean geometry were not the true one." At the forefront of 
his thoughts was a major work that he was composing, the Disquisitiones 
Arithmeticae, and by 1 798 it was pretty much finished. But Gauss wanted 
to make certain that he had given due credit to his predecessors, so he vis­
ited the University of Helmstedt, which had a high-quality mathematics li­
brary overseen by Johann Pfaff, the best-known mathematician in 
Germany. 

In 1 80 1 , after a frustrating delay at the printer's, the Disquisitiones 
Arithmeticae was published, with an effusive and no doubt heartfelt dedi­
cation to Duke Ferdinand. The duke's generosity did not end when Carl 
left the university. Ferdinand paid for his doctoral thesis, which he pre­
sented at the University of Helmstedt, to be printed as the regulations re­
quired. And when Carl s tarted to worry about how to support himself 
when he left university, the duke gave him an allowance so that he could 
continue his researches without having to be bothered about money. 

A noteworthy feature of the Disquisitiones Arithmeticae is its uncom­
promising style. The proofs are careful and logical, but the writing makes 
no concessions to the reader and gives no clue about the intuition behind 
the theorems. Later, he justified this attitude, which continued through­
out his career, on the grounds that "When one has constructed a fine 
building, the scaffolding should no longer be visible." Which is all very 
well if all you want people to do is admire the building. It's not so helpful 
if you want to teach them how to build their own. Carl Gustav Jacob Ja­
cobi, whose work in complex analysis built on Gauss 's ideas, said of his 
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illustrious predecessor, "He  i s  like the fox, who erases his tracks in  the 
sand with his tail." 

.
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Around this time, mathematicians were gradually coming to realize that al­
though "complex" numbers seemed artificial and their meaning incom­
prehensible, they made algebra much neater by providing solutions to 
equations in a uniform way. Elegance and simplicity are the touchstones 
of mathematics, and novel concepts, however strange they appear at first, 
tend to win out in the long run if they help to keep the subject elegant and 
simple. 

If you work purely with traditional "real" numbers, equations can be 
annoyingly erratic. The equation x2_ 2 = 0 has two solutions, plus or mi­
nus the square root of two, but the very similar equation x2 + 1 = 0 has 
none at all . However, this equation has two solutions in complex numbers : 
i and -i. The symbol i for R was introduced by Euler in 1 777 but not 
published until 1 794. A theory couched solely in terms of "real" equa­
tions is littered with exceptions and pedantic distinctions. The analogous 
theory of complex equations avoids all of these complications by swal­
lowing wholesale one big complication at the very outset: to allow com­
plex numbers as well as real ones. 

By 1 750, the circle of ideas initiated by the mathematicians of Renais­
sance Italy had matured and closed. Their methods for solving cubic and 
quartic equations were seen as natural extensions of the Babylonian solu­
tion of quadratics. The connection between radicals and complex num­
bers had been worked out in some detail, and it was known that in this 
extension of the usual number system, a number had not one cube root 
but three; not one fourth root but four; not one fifth root but five. The 
key to understanding where these new roots came from was a beautiful 
property of "roots of unity," that is, nth roots of the number 1 .  These 
roots form the vertices of a regular n-sided polygon in the complex plane, 
with one vertex at 1 .  The remaining roots of unity space themselves out 
equally around a circle of radius 1 ,  centered at O. For instance, the left­
hand figure (next page) shows the locations of the fifth roots of unity. 

More generally, from any particular fifth root of some number it is pos­
sible to obtain four more, by multiplying it by q, q2, q-', and q4. These num­
bers are also spaced equally around a circle centered at O. For example, the 
five fifth roots of 2 are shown in the right-hand figure. 
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(Left) The fifth roots of un ity in  the complex p lane.  (Right) The fifth roots of two. 

This was all very pretty, but it suggested something much deeper. The 
fifth roots of 2 can be viewed as the solutions of the equation x' = 2. This 
equation is of the fifth degree, and it has five complex solutions, only one 
of which is real. Similarly, the equation x! = 2 for fourth roots of 2 has 
four solutions, the equation for 1 7th roots of 2 has 1 7  solutions, and so 
on. You don't have to be a genius to spot the pattern: the number of solu­
tions is equal to the degree of the equation. 

The same seemed to apply not just to the equations for nth roots, but 
to any algebraic equation whatsoever. Mathematicians became convinced 
that within the realm of complex numbers, every equation has exactly the 
same number of solutions as its degree. (Technically, this statement is true 
only when solutions are counted according to their "multiplicity." If this 
convention is not used, then the number of solutions is less than or equal 
to the degree.) Euler proved this property for equations of degree 2, 3, 
and 4, and claimed that similar methods would work in general. His ideas 
were plausible, but filling in the gaps turned out to be almost impossible, 
and even today it takes a major effort to push Euler's method to a conclu­
sion. Nevertheless, mathematicians assumed that if they were solving an 
equation of some degree, they should expect to find precisely that many 
solutions. 

As Gauss developed his ideas in number theory and analysis, he be­
came more and more dissatisfied that no one had proved this assumption. 
Characteristically, he came up with a proof. It was complicated and curi­
ously indirect: any competent mathematician could be convinced that it 
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was correct, but no one could guess how Gauss had come up with i t  in the 
first place. The fox of mathematics was wielding his tail with a vengeance. 

·· .• t .. ··· 

.. ::: .... � .. 
The Latin title of Gauss's dissertation translates as "A new proof that 
every rational integral function of one variable can be resolved into real 
factors of the first or second degree." Unwrapping the jargon of the pe­
riod, the title asserts that every polynomial (with real coefficients) is a 
product of terms that are either linear or quadratic polynomials. 

Gauss used the word "real" to make it clear that he was working within 
the traditional number system, in which negative quantities lack square 
roots. Nowadays we would state Gauss's theorem in a logically equivalent 
but simpler form: every real polynomial of degree n has n real or complex 
roots. But Gauss chose his terminology carefully, so that his work did not 
rely on the still puzzling system of complex numbers. Complex roots of a 
real polynomial can always be combined in pairs to yield real quadratic fac­
tors, whereas linear factors correspond to real roots. By phrasing the title 
in terms of these two types of factor ("factors of the first or second de­
gree") , Gauss circumvented the contentious issue of complex numbers. 

One word in the title was unjustified: "new," which implies that there 
are "old" proofs. Gauss gave the first rigorous proof of this basic theorem 
in algebra. But to avoid offending illustrious predecessors who had already 
claimed proofs-all of them faulty-Gauss presented his breakthrough 
as merely the latest proof, using new (that is, correct) methods. 

This theorem came to be known as the Fundamental Theorem of Al­
gebra. Gauss considered it so important that he gave four proofs in all, the 
last at the age of 70. He personally had no qualms about complex num­
bers : they played a big role in his thinking, and he subsequently developed 
his own explanation of their meaning. But he disliked controversy. Over 
the years he suppressed many of his most original ideas-non-Euclidean 
geometry, complex analysis, and a rigorous approach to complex numbers 
themselves-because he did not want to attract what he referred to as 
"the cries of the Boeotians." 

Gauss did not confine himself to pure mathematics. Early in 1 80 1 ,  the 
Italian priest and astronomer Giuseppe Piazzi had discovered a new 
planet, or so he thought-a faint patch of light in his telescope that 
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moved against the background of the stars from one night to the next, a 
sure sign that it was a body in the solar system. It was duly given the name 
Ceres, but it was actually an asteroid, the first to be found. Having found 
the new world, Piazzi promptly lost it in the glare of the Sun. He had 
made so few observations that astronomers hadn't been able to work out 
the new body's orbit and worried that they wouldn't be able to locate it 
again when it emerged from behind the Sun. 

This was a problem worthy of Gauss, and he set to with a will. He in­
vented better ways to determine orbits from small numbers of observa­
tions, and predicted where Ceres would reappear. When it duly did so, 
Gauss's fame spread far and wide. The explorer Alexander von Humboldt 
asked Pierre-Simon de Laplace, an expert in celestial mechanics, to name 
the greatest mathematician in Germany, and got the reply "Pfaff." When a 
startled Humboldt asked, "What about Gauss?" Laplace replied, "Gauss is 
the greatest mathematician in the world." 

Unfortunately, this newfound celebrity diverted him from pure mathe­
matics into lengthy calculations in celestial mechanics-generally felt to be 
a waste of his considerable talents. It's not that celestial mechanics was 
unimportant, but other, less able mathematicians could have done the 
same work. On the other hand, it also set him up for life. Gauss had been 
looking for a prominent position that offered the opportunity for public 
service, to reward his sponsor, the duke. His work on Ceres landed him 
the directorship of the G6ttingen observatory, a post that he held for the 
rest of his academic life. 

He married Johanna Osthoff in 1 805. Writing to Bolyai, he described 
his new wife: "The beautiful face of a Madonna, a mirror of peace of 
mind and health, tender, somewhat fanciful eyes, a blameless figure-this 
is one thing; a bright mind and an educated language-this is another; but 
the quiet, serene, modest and chaste soul of an angel who can do no harm 
to any creature-that is the best." Johanna bore him two children, but in 
1 809 she died in childbirth, and a devastated Gauss "closed her angelic 
eyes in which I have found heaven for the last five years." He became 
lonely and depressed, and life for him was never quite the same. He did 
find a new wife, Johanna's best friend Minna Waldeck, but the marriage 
was not terribly happy despite the birth of three more children. Gauss was 
always arguing with his sons and telling his daughters what to do, and the 
boys got so fed up that they left Europe for the United States, where they 
prospered. 
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Soon after taking up  the directorship a t  Gottingen, Gauss returned to 
an old idea, the possibility of a new type of geometry that satisfies all of 
Euclid's axioms except the parallel axiom. He eventually became con­
vinced that logically consistent non-Euclidean geometries are possible, 
but never published his results for fear that they would be considered too 
radical. Janos Bolyai, the son of his old friend Wolfgang, later made simi­
lar discoveries, but Gauss felt unable to praise the work because he had 
anticipated most of it. Still later, when Nikolai Ivanovich Lobachevsky in­
dependently rediscovered non-Euclidean geometry, Gauss had him made 
a corresponding member of the Gottingen Academy, but again offered no 
public praise. 

Years later, as mathematicians studied these new geometries in more 
detail, they came to be interpreted as geometries of "geodesics"-short­
est paths--on curved surfaces. If the surface had constant positive curva­
ture, like a sphere, the geometry was called elliptic. If the curvature was 
constant and negative (shaped like a saddle near any point) the geometry 
was hyperbolic. Euclidean geometry corresponded to zero curvature, jlat 
space. These geometries could be characterized by their metric, the for­
mula for the distance between two points. 

These ideas may have led Gauss to a more general study of curved sur­
faces. He developed a beautiful formula for the amount of curvature, and 
proved that it gave the same result in any coordinate system. In this for­
mulation, the curvature did not have to be constant: it could vary from 
one place to another. 

In a move that is not unusual in mathematics, Gauss in middle age 
turned to practical applications. He assisted several surveying projects, the 
biggest being the triangulation of the region of Hanover. He did a lot of 
fieldwork, followed by data analysis. To aid the work he invented the he­
liotrope, a device for sending signals by reflected light. But when his heart 
began to show signs of failure, he stopped surveying and decided to spend 
his remaining years in Gottingen. 

During this unhappy period a young Norwegian named Abel wrote to 
him about the impossibility of solving the quintic equation by radicals, but 
received no reply. Probably Gauss was too depressed even to look at the 
paper. 

Around 1 833, he became interested in magnetism and electricity, col­
laborating with the physicist Wilhelm Weber on a book, General Theory of 
Terrestrial Magnetism, published in 1 839. They also invented a telegraph, 
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linking Gauss's observatory t o  the physics laboratory where Weber 
worked, but the wires kept breaking, and other inventors came up with 
more practical designs. Then Weber was fired from G6ttingen along with 
six others because they refused to swear allegiance to the new king of 
Hanover, Ernst August. Gauss was very upset by this, but his political 
conservatism and reluctance to make waves prevented him from raising 
any public protest, though he may have made efforts behind the scenes on 
Weber's behalf. 

In 1 845, Gauss produced a report on the pension fund for widows of 
G6ttingen professors, examining the likely effect of a sudden increase in 
the number of members. He invested in railway and government bonds 
and amassed a tidy fortune. 

After 1 850, troubled by the onset of heart problems, Gauss cut back on 
work. The most important event of that period, for our story, was the ha­
bilitation thesis of his student Georg Bernhard Riemann. (In the German 
academic system, habilitation is the next step up after a PhD.) Riemann 
generalized Gauss's work on surfaces to multidimensional spaces, which 
he called "manifolds." In particular, he extended the concept of a metric, 
and found a formula for the curvature of a manifold. In effect, he created 
a theory of curved multidimensional spaces. Later this idea was to prove 
crucial in Einstein's work on gravity. 

Gauss, now being regularly seen by his doctor, attended Riemann's pub­
lic lecture on the topic and was impressed. As his health deteriorated fur­
ther, he spent more and more time in bed but continued to write letters, 
read, and manage his investments. Early in 1 855, Gauss died peacefully in 
his sleep, the greatest mathematical mind the world has ever known. 
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The first significant advance over Cardano's The Great Art came about 
halfway through the eighteenth century. Although the Renaissance 
mathematicians could solve cubics and quartics, their methods were 
basically a series of tricks. Each trick worked, but more, it seemed, by 

a series of coincidences than for any systematic reason. That reason was 
finally pinned down around 1 770 by two mathematicians: Joseph-Louis 
Lagrange, a native of Italy who always considered himself French, and 
Alexandre-Theophile Vandermonde, who definitely was. 

Vandermonde was born in Paris in 1 735. His father wanted him to be­
come a musician, and Vandermonde became proficient on the violin and 
followed a musical career. But in 1 770 he became interested in mathemat­
ics. His first mathematical publication was about symmetric functions of 
the roots of a polynomial-algebraic formulas like the sum of all the 
roots, which do not change if the roots are interchanged. Its most original 
contribution was to prove that the equation xn_ 1 = 0, associated with the 
regular n-gon, can be solved by radicals if n is 1 0  or smaller. (Actually, it is 
solvable by radicals for any n. ) The great French analyst Augustin-Louis 
Cauchy later cited Vandermonde as the first to realize that symmetric 
functions can be applied to the solution of equations by radicals. 

In Lagrange's hands, this idea would form the starting point for an at­
tack on all algebraic equations. 

7 5  
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Lagrange was born i n  the Italian city of Turin and baptized Giuseppe 
Lodovico Lagrangia. His family had strong French links-his great-grand­
father had been a captain in the French cavalry before moving to Italy to 
serve the duke of Savoy. When Giuseppe was quite young he started using 
Lagrange as a surname, but combined it with Lodovico or Luigi as his first 
name. His father was the treasurer of the Office of Public Works and For­
tifications in Turin; his mother, Teresa Grosso, was a doctor's daughter. 
Lagrange was their first child out of an eventual total of eleven, but only 
two survived beyond childhood. 

Although the family was in the upper levels of Italian society, they were 
strapped for cash, thanks to some bad investments. They decided that La­
grange should study law, and he attended the College of Turin. He en­
joyed law and classics but found the mathematics classes, which consisted 
largely of Euclidean geometry, rather boring. Then he came across a book 
on algebraic methods in optics by the English astronomer Edmond Hal­
ley, and his opinion of mathematics changed dramatically. Lagrange was 
set on the course that would dominate his early research: the application 
of mathematics to mechanics, especially celestial mechanics. 

He married a cousin, Vittoria Conti .  "My wife, who is one of my 
cousins and who even lived for a long time with my family, is a very good 
housewife and has no pretensions at all," he wrote to his friend Jean Ie 
Rond D'Alembert, also a mathematician. He also confided that he did not 
want any children, an ambition he achieved. 

Lagrange took a position in Berlin, wrote numerous research papers, 
and won the French Academy'S annual prize on several occasions-shar­
ing the 1 772 prize with Euler, winning the 1 774 prize for work on the dy­
namics of the Moon and the 1 780 prize for work on the influence of 
planets on cometary orbits. Another of his loves was number theory, and 
in 1 770 he proved a classic of the genre, the Four Squares Theorem, 
which asserts that every positive whole number is a sum of four perfect 
squares. For instance, 7 = 22 + 1 2 +  1 2 + 1 2, 8 = 22 + 22 + 02 + 02, and so on. 

He became a member of the French Academy of Sciences and moved 
to Paris, where he remained for the rest of his life. He believed that it was 
wise to obey the laws of the country where you lived even if you disagreed 
with them, a point of view that probably helped him escape the fate of 
many other intellectuals during the French Revolution. In 1 788 Lagrange 
published his masterpiece, Analytical Mechanics, which rewrote mechanics 
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as a branch o f  analysis. H e  was proud that his massive book contained no 
diagrams whatsoever; in his view this made the logic more rigorous. 

He married his second wife, Renee-Frans;oise-Adelaide Le Monnier, 
the daughter of an astronomer, in 1 792. In August 1 793, during the Reign 
of Terror, the Academy was shut down, and the only part that remained 
active was the commission on weights and measures. Many leading scien­
tists were removed-the chemist Antoine Lavoisier, the physicist Charles 
Augustin Coulomb, and Pierre Simon Laplace. Lagrange became the new 
chairman of weights and measures. 

At that point his Italian birth became a problem. The revolutionary 
government passed a law requiring any foreigner born in an enemy nation 
to be arrested. Lavoisier, who at that point retained some influence, 
arranged for Lagrange to be exempted from the new law. Soon afterward, 
a revolutionary tribunal condemned Lavoisier to death; he was guillotined 
the next day. Lagrange remarked, "It took only a moment to cause this 
head to fall, and a hundred years will not suffice to produce its like." 

Under Napoleon, Lagrange was granted several honors : the Legion of 
Honor and Count of the Empire in 1 808, and the Grand Cross of the Im­
perial Order of the Reunion in 1 8 1 3. A week after receiving the Grand 
Cross, he was dead. 

..�.!.:;:., 

..
..

..•...... 

In 1 770, the same year that he discovered his Four Squares Theorem, La­
grange embarked upon a vast treatise on the theory of equations, saying, 
"I propose in this memoir to examine the various methods found so far 
for the algebraic solution of equations, to reduce them to general princi­
ples, and to explain a priori why these methods succeed for the third and 
fourth degree, and fail for higher degrees." As Jean-Pierre Tignol put it in 
his book Galois's Theory of Algebraic Equations, Lagrange's "explicit aim is 
to determine not only how these methods work, but why." 

Lagrange reached a much deeper understanding of Renaissance meth­
ods than the methods '  inventors had; he even proved that the general 
scheme that he had found to explain their success could not be extended 
to the fifth degree or higher. Yet he failed to take the further step of won­
dering whether any solution was possible in those cases. Instead, he tells 
us that his results "will be useful to those who will want to deal with the 
solution of the higher degrees, by providing them with various views to 
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this end and above all by sparing them a large number of  useless steps 
and attempts." 

Lagrange had noticed that all of the special tricks employed by Car­
dano, Tartaglia, and others were based on one technique. Instead of trying 
to find the roots of the given equations directly, the idea was to transform 
the problem into the solution of some auxiliary equation whose roots 
were related to the original ones, but different. 

The auxiliary equation for a cubic was simpler-a quadratic. This "re­
solvent quadratic" could be solved by the Babylonian method; then the 
solution of the cubic could be reconstructed by taking a cube root. This is 
exactly the structure of Cardano's formula. For a quartic, the auxiliary 
equation was also simpler-a cubic. This "resolvent cubic" could be 
solved by Cardano's method; then the solution of the quartic could be re­
constructed by taking a fourth root-that is, a repeated square root. This 
is exactly the structure of Ferrari's formula. 

We can imagine Lagrange's growing excitement. If the pattern contin­
ued, then the quintic equation would have a "resolvent quartic": solve that 
by Ferrari's method and then take a fifth root. And the process would con­
tinue, with the sextic having a resolvent quintic, solvable by what would be 
known as Lagrange's method. He would be able to solve equations of any 
degree. 

Harsh reality brought him down to earth. The resolvent equation for 
the quintic was not a quartic but an equation of higher degree, a sextic. 
The method that had simplified the cubic and quartic equations compli­
cated the quintic. 

Mathematics does not progress by replacing difficult problems by even 
harder ones. Lagrange's unified method failed on the quintic. Still, he had 
not proved the quintic to be unsolvable, because there might exist differ­
ent methods. 

Why not? 
To Lagrange, this was a rhetorical question. But one of his successors 

took it seriously, and answered it. 

His name was Paolo Ruffini, and when I say that he "answered" La­
grange's rhetorical question, I am cheating slightly. He thought he had an­
swered it, and his contemporaries never found anything wrong with his 
answer-partly because they never took his work seriously enough to 
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really try. Ruffini spent his life believing that he  had proved the quintic un­
solvable by radicals. Only after his death did it turn out that his proof had 
a significant gap. It was easily overlooked among his pages and pages of 
intricate calculations ;  it was an "obvious" assumption, one that he had 
never even noticed he was making. 

As every professional mathematician knows from bitter experience, it is 
very difficult to notice that you are making an unstated assumption, pre­
cisely because it is unstated. 

Ruffini was born in 1 765, the son of a doctor. In 1 783 he enrolled at the 
University of Modena, studying medicine, philosophy, literature, and math­
ematics. He learned geometry from Luigi Fantini and calculus from Paolo 
Cassiani. When Cassiani moved on to a post with the Este family, manag­
ing their vast estates, Ruffini, though still a student, took charge of Cas­
siani's analysis course. He obtained a degree in philosophy, medicine, and 
surgery in 1 788, adding a mathematics degree in 1 789. Soon afterward, he 
took over a professorship from Fantini, whose eyesight was failing. 

Events interfered with his academic work. Napoleon Bonaparte de­
feated the armies of Austria and Sardinia in 1 796, turned his sights to­
wards Turin, and captured Milan. Soon he had occupied Modena, and 
Ruffini was forced to become involved in politics. He had planned to go 
back to the university in 1 798, but refused, on religious grounds, to swear 
allegiance to the republic. The resulting lack of employment left him more 
time to carry out his researches, and he focused on the vexed question of 
the quintic. 

Ruffini convinced himself that there was a good reason why no one 
had managed to find a solution: there wasn't one. Specifically, there was no 
formula involving nothing more esoteric than radicals that would solve 
the general quintic. In his two-volume tome General Theory of Equations, 
published in 1 799, he claimed to be able to prove this, asserting, "The al­
gebraic solution of general equations of degree greater than four is always 
impossible. Behold a very important theorem which I believe I am able to 
assert (if I do not err) : to present the proof of it is the main reason for 
publishing this volume. The immortal Lagrange, with his sublime reflec­
tions, has provided the basis of my proof." 

The proof occupied more than 500 pages of largely unfamiliar mathe­
matics. Other mathematicians found it somewhat daunting. Even today, 
no one is keen to wade through a very long and technical proof unless 
there is very good reason to do so. If Ruffini had announced a solution to 
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the quintic, his peers would surely have made the effort. But you can un­
derstand their reluctance to devote hundreds of hours to the claim of a 
negative result. 

Especially when it might be wrong. Few things are more annoying than 
finding an error on page 499 of a SOO-page mathematics book. 

Ruffini sent Lagrange a copy in 1 801 , and after a few months' silence 
he sent another copy, with a note: "If I have erred in any proof, or if I 
have said something which I believed new, and which is in reality not new, 
finally if I have written a useless book, I pray you point it out to me sin­
cerely." Still no reply. He tried again in 1 802. Nothing. 

Several years passed without the recognition Ruffini felt was his due. 
Instead, vague rumors circulated, hinting that there were mistakes in his 
"proof," but since no one said what those mistakes might be, Ruffini was 
unable to defend himself. Eventually, he decided, no doubt correctly, that 
his proof was too complicated, and set about finding something simpler. 
He achieved this in 1 803, writing, "In the present memoir, I shall try to 
prove the same proposition with, I hope, less abstruse reasoning and with 
complete rigor." The new proof fared no better. The world wasn't ready 
for Ruffini's insights or for the further proofs he published in 1 808 and 
1 81 3. He never stopped trying to get his work recognized by the mathe­
matical community. When Jean Delambre, who predicted the position of 
the planet Uranus, wrote a report on the state of mathematics since 1 789, 
he included the sentence, "Ruffini proposes to prove that solving the 
quintic is impossible." Ruffini promptly replied, "I not only proposed to 
prove, but in reality did prove." 

To be fair, a few mathematicians were happy with Ruffini's proof. 
Among them was Cauchy, who had a pretty poor track record when it 
came to giving credit where it was due, unless it was due to himself. In 
1 821 , he wrote to Ruffini, "Your memoir on the general resolution of 
equations is a work which has always seemed to me worthy of the atten­
tion of mathematicians and which, in my judgment, proves completely the 
impossibility of solving algebraically equations of higher than the fourth 
degree." But by then the praise was far too late. 

Around 1 800 Ruffini started teaching applied mathematics in the city's 
military school. He continued to practice medicine, looking after patients 
from the poorest to the richest in society. In 1 8 1 4, after the fall of 
Napoleon, he became rector of the University of Modena. The political 
situation was still extremely complex, and despite his personal skills, the 
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great respect in which he was held, and his reputation for honesty, his time 
as rector must have been very difficult. 

Simultaneously, Ruffini held the chairs of applied mathematics, practi­
cal medicine, and clinical medicine in the University of Modena. In 1 8 1 7, 
there was a typhus epidemic and Ruffini continued to treat his patients un­
til he caught the disease himself. He survived but never fully regained his 
health, and in 1 8 1 9  he gave up his chair of clinical medicine. But he never 
gave up his scientific work, and in 1 820 he published a scientific article on 
typhus based on his own experience as both physician and patient. He 
died in 1 822, barely a year after Cauchy had written to praise his work on 
the quintic. 
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One reason Ruffini's work was not well received may have been its novelty. 
like Lagrange, he based his investigations on the concept of a "permuta­
tion." A permutation is a way to rearrange some ordered list. The most fa­
miliar example is shuffling a pack of  cards. The usual aim here is to 
achieve some random-that is, unpredictable--Drder. The number of dif­
ferent permutations of a pack of cards is huge, so the chance of predict­
ing the outcome of random shuffling is negligible. 

Permutations arise in the theory of equations because the roots of a 
given polynomial can be considered as a list. Some very basic features of 
equations are directly related to the effect of shuffling that list. The intu­
ition is that the equation "does not know" the order in which you listed its 
roots, so permuting the roots should not make any important difference. 
In particular, the coefficients of the equation should be fully symmetric 
expressions in the roots-expressions that do not change when the roots 
are permuted. 

But as Lagrange had appreciated, some expressions in the roots may be 
symmetric with respect to some permutations, but not others. These "par­
tially symmetric" expressions are intimately associated with any formula 
for solving the equation. This feature of permutations was familiar to 
Ruffini's peers. Much less familiar was Ruffini's systematic use of another 
of Lagrange's ideas : that you can "multiply" two permutations to get an­
other one by performing them in turn. 

Consider the three symbols a, b, c. There are six permutations: abc, acb, 
bac, bca, cab, and cba. Take one of them, say cba. At first sight, this is just 
an ordered list formed from the three symbols. But we can also think of it 
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a s  a rule for rearranging the original list abc. In  this case, the rule i s  "re­
verse the order." And we can apply this rule not just to that list but to any 
list. Apply it to bca, say, and you get acb. So there is a sense in which cba X 
bca = acb. 

This idea, which is central to our story, probably makes more sense if 
we draw some diagrams. Here are two diagrams for the permutations that 
rearrange abc into cba and bca: 

Two perm utations of the symbols a, b, c. 

We can combine the two rearrangements into one, by stacking these 
pictures on top of each other. There are two ways to do this: 

M u lti p ly ing perm utations. The resu lt  depends 

on which comes fi rst. 

Now we can read off the result of "multiplying" the two permutations 
by writing down the bottom row, which here (left-hand picture) is acb. 
With this definition of "multiplication" (which is not the usual concept 
for multiplying numbers) we can make sense of the statement cba X bca = 
acb. The convention is that the first permutation in the product goes on 
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the bottom of  the stack. I t  matters, because we  get a different answer i f  we 
swap the two layers of the stack. The right-hand picture shows that when 
the permutations are multiplied in the opposite order, the result is bca X 
cba = bac. 

. .....
•... 

... ,;.� ... 

The essence of Ruffini's impossibility proof was to develop conditions 
that must be satisfied by any quintic whose roots can be expressed by rad­
icals. If the general quintic does not satisfy these conditions, then it does 
not have that kind of root-and thus can't be solved by any natural exten­
sion of the methods that worked for the cubic and quartic. 

Taking a leaf out of Lagrange's book, Ruffini homed in on symmetric 
functions of the roots and their relation to permutations. The quintic has 
five roots, and there are 1 20 permutations of five symbols. Ruffini realized 
that this system of permutations would have to possess certain structural 
features, inherited from any hypothetical formula for solutions of the 
quintic. If those features were absent, there could be no such formula. It 
was a bit like hunting a tiger in a muddy jungle. If there really was a tiger 
present, it would leave clear paw-prints in the mud. No paw-prints, no 
tiger. 

By exploiting mathematical regularities of this new form of multiplica­
tion, Ruffini was able to prove-to his own satisfaction, at least-that the 
multiplicative structure of the 1 20 permutations is inconsistent with the 
symmetric functions that have to exist if the equation can be solved by 
radicals. And he did achieve something significant. Before Ruffini started 
working on the quintic, virtually every mathematician in the world was 
convinced that this equation could be solved; the only question was how. 
One exception was Gauss, who dropped hints that he thought no solution 
existed-but he also remarked that it wasn't a very interesting question, 
one of the few times his instincts let him down. 

After Ruffini there seems to have been a general feeling that the quintic 
is not solvable by radicals. Very few thought Ruffini had proved this-but 
his work certainly made a lot of people feel rather doubtful that radicals 
were up to the job. This change of perception had an unfortunate side ef­
fect: mathematicians became much less interested in the whole issue. 

Ironically, it later emerged that Ruffini's work had a major gap, but no 
one spotted it at the time. The skepticism of his contemporaries turned 
out to be justified, in a way. But the real breakthrough was the method: 
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Ruffini found the correct strategy; he  just didn't use quite the right tactics. 
The subject needed a strategist who could also pay scrupulous attention to 
the minutiae of tactics. Now it got one. 

•••• .• t •• •·•• 

.. /i·� .. 

After years of carrying out the good Lord's work, without complaint, as a 
pastor in some of the poorest and most remote regions of the Norwegian 
mountains, in 1 784 Hans Mathias Abel received his just reward. He got 
himself appointed to the parish of Gjerstad, near the southern coast of 
Norway, not far from Oslo Fjord. Gjerstad wasn't exactly wealthy, but it 
was much richer than the places where he had previously ministered. His 
family finances would improve dramatically. 

Spiritually, Pastor Abel's task was the same as ever: to look after his 
flock and do his best to keep them happy and virtuous. He came from a 
well-to-do family. His Danish great-grandfather had been a merchant who 
did a lucrative trade supplying the Norwegian army. His father, also a mer­
chant, had been an alderman in the town of Bergen. Hans was proud but 
modest, not particularly intelligent but far from stupid, and prepared to 
speak his mind whatever the cost. 

To help feed the poor of the parish, he grew new types of plant on his 
farm: flax, for making linen, and above all a new type of root vegetable, 
the ground apple, otherwise known as the potato. He wrote poetry, pot­
tered about collecting information for a history of the area, and lived in 
harmony with his wife Elisabeth. His house was famous for the quality of 
its food; alcohol was never served. Drinking was a major social problem in 
Norway, and the pastor was determined to set his flock an example­
though on one occasion he arrived in church as drunk as a newt, to show 
his parishioners how demeaning drunkenness was. He had two children, 
an unusually small family for the times: a daughter Margaretha, and a son 
S0ren. 

Margaretha was unexceptional, never married, and lived most of her 
life with her parents. S0ren was altogether different: quick, intelligent, and 
original, with a taste for high society. He lacked his father's composure and 
sense of duty, and suffered for it. Still, he followed his father's profession, 
becoming first curate, then pastor; married Anne Marie Simonsen, the 
daughter of a family friend; and accepted a post in Finn0Y, on the south­
west coast. "The people round here are superstitious, but are filled with 
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knowledge o f  the Bible," he wrote. "They support every erroneous opin­
ion by misunderstood divine authority." Nevertheless, he enjoyed the job. 

In 1 801 , S0ren wrote to a friend, "My domestic joy has recently been 
increased, for on the third day of Christmas my wife presented me with a 
healthy son." This was Hans Mathias. A brother, Niels Henrik, arrived in 
the summer of 1 802. From day one Niels suffered from ill health, and his 
mother had to spend a lot of time looking after him. 

Military tensions were running high in Europe, and the combined state 
of Norway-Denmark was sandwiched between the major powers of En­
gland and France. Napoleon wanted to ally it with his cause, so when 
Britain came to an agreement with Sweden, Norway-Denmark instantly be­
came an enemy of the British, who invaded. After three days, Norway­
Denmark surrendered to save Copenhagen from destruction. Later, when 
Napoleon's grip on power was fading, his aide Jean Baptiste Bernadotte be­
came king of Sweden. When Norway was ceded to Sweden, the Norwegian 
parliament, the Storting, was forced to accept Bernadotte as monarch. 

The two boys were sent to the Cathedral School in Oslo in 1 8 1 5 . The 
mathematics teacher, Peter Bader, was the sort who motivated his stu­
dents with serious physical violence. Nevertheless, both boys did well. 
Then in 1 8 1 8, Bader gave one of the pupils-the son of a representative 
to the Storting-such a beating that the boy died. Amazingly, Bader was 
not tried, but he was replaced as mathematics teacher by Bernt Holmboe, 
who had been assistant to Christoffer Hansteen, the applied mathematics 
professor. This marked a turning point in Niels's mathematical career, be­
cause Holmboe allowed his pupils to tackle interesting problems outside 
the usual syllabus. Niels was permitted to borrow classic textbooks, 
among them some by Euler. "From now on," Holmboe later wrote, 
" [Niels] Abel devoted himself to mathematics with the most fervent ea­
gerness and progressed in his science with the speed characteristic of a 
genius." 

Shortly before finishing at school, Niels convinced himself that he had 
solved the quintic equation. Neither Holmboe nor Hansteen could find a 
mistake, so they transmitted the calculations to Ferdinand Degen, a 
prominent Danish mathematician, for possible publication by the Danish 
Academy of Science. Degen, too, found no errors in the work, but being 



8 6  W H Y  B E A U T Y  I S  T R U T H  

an  experienced hand who knew a trick o r  two, h e  asked Niels to try out 
the calculations on some specific examples. Niels quickly realized that 
something was amiss; he was disappointed, but relieved that he had not 
been allowed to make a fool of himself by publishing an erroneous result. 

S0ren's ambition and lack of tact now combined with embarrassing re­
sults. He read out a statement accusing two Storting representatives of 
unjustly imprisoning the manager of an ironworks, owned by one of 
them. This attack on their integrity created an uproar. It then transpired 
that the man concerned was unreliable, but S0ren refused to apologize. 
Depressed and unhappy, he drank himself to death. At the funeral, 
S0ren's widow, Anne Marie, became extremely drunk and took her fa­
vorite servant to bed. Next morning, she received several visiting offi­
cials-still in bed, with her lover beside her. An aunt wrote, "The poor 
boys, I feel sorry for them." 

Niels graduated from the Cathedral School in 1 821 and took the en­
trance examination to the University of Christiania (now Oslo) . He re­
ceived the highest possible grade in arithmetic and geometry and good 
grades in the rest of mathematics, and did terribly in everything else. Now 
desperately poor, he applied for a grant that would give him free accom­
modation and wood for the fire. He also sought a grant for living ex­
penses, and some of the professors, recognizing his unusual talent, gave 
money to create a fellowship for him. Thus provided for, Niels devoted 
himself to mathematics and to solving the quintic, determined to make 
good his previous abortive attempt . 

......•..
.... .. /·i'� .. 

In 1 823 Niels worked on elliptic integrals, an area of analysis that would 
be his most lasting monument, outclassing even his work on the quintic. 
He tried to prove Fermat's Last Theorem but found neither proof nor dis­
proof, though he did show that any example that disproves the theorem 
must involve gigantic numbers. 

In the summer of that year, he went to a ball, met a young woman, and 
asked her to dance. After several failed attempts, they both burst out 
laughing-neither of them had the foggiest idea how to dance. The lady 
was Christine Kemp, universally known as "Crelly," the daughter of a war 
commissar. Like Niels she had no money, and earned a living as a private 
tutor in everything from needlework to science. "She is not beautiful, has 
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red hair and freckles, but she i s  a wonderful girl," h e  wrote. They fell in 
love. 

These events gave Niels's mathematics a boost. Toward the end of 
1 823, he proved the quintic's impossibility-and unlike Ruffini's near 
miss, his did not have any gaps. Its strategy was similar to Ruffini's but 
with better tactics. Initially, Niels didn't know about Ruffini's work. Later, 
he certainly must have known of it because he alludes to its incomplete­
ness. But even Niels did not put his finger on the precise gap in Ruffini's 
proof--even though his method turned out to be just what was needed to 
bridge the gap. 

Niels and Crelly became engaged. To marry his sweetheart, Niels had to 
get a job-which meant his talents had to be recognized by Europe's lead­
ing mathematicians. Publishing his theory would not be enough: he had to 
beard the lions in their dens. And to do that, he needed enough money to 
travel. 

After much effort, the University of Christiania was persuaded to grant 
Niels enough money for a research visit to Paris, where he would meet 
some of the world's leading mathematicians. In preparation for the trip, he 
decided that he needed printed copies of his best work. He believed that 
his impossibility proof for the quintic would impress his French peers ; 
unfortunately, all of his work had been printed in Norwegian, in an ob­
scure journal. He therefore decided that he should get his work on the 
theory of equations printed privately in French. Its title was "Memoir on 
algebraic equations, wherein one proves the impossibility of solving the 
general equation of the fifth degree." 

To save on printing costs, Niels distilled his ideas down to their essen­
tials, and the printed version ran a mere six pages. This was a lot less  than 
Ruffini's 500 pages, but there are occasions in mathematics where brevity 
can make ideas more obscure. Many of the logical details-which in this 
area were crucial-had to be left out. The paper was a sketch, not a proof. 

Niels introduced it by writing, "Mathematicians have generally been 
occupied with the problem of finding a general method for solving alge­
braic equations, and several have made attempts to prove the impossibil­
ity of it. I dare to hope, therefore, that mathematicians will receive 
favorably this article which has for its purpose to fill this lacuna in the 
theory of equations." It was a faint hope. Though he succeeded in visit­
ing some mathematicians in Paris and getting them to agree to look at his 
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paper, its reasoning was so compressed that most of them probably 
found it incomprehensible. Gauss filed his copy but never read it-when 
it was found after his death, the pages were still uncut. 

Later, perhaps realizing his mistake, Abel produced two longer ver­
sions of his proof, giving more of the details. Having by this time heard 
of Ruffini, he wrote in these versions, "The first to attempt a proof of 
the impossibility of an algebraic solution of the general equation was 
the mathematician Ruffini; but his memoir is so complicated that it is 
difficult to judge the correctness of the argument. It appears to me that 
his reasoning is not always satisfactory." But like everyone else, he didn't 
say why. 

Ruffini and Abel wrote their arguments in the formal mathematical lan­
guage of the time, which was not well suited to the style of thinking re­
quired. Mathematics then was mainly concerned with specific, concrete 
ideas, whereas the key to the theory of equations is to think in rather 
general terms-about s tructures and processes rather than specific 
things. Thus their ideas were difficult for their contemporaries to grasp 
for reasons that went beyond language. But even for modern mathe­
maticians, using the terminology of the period would make comprehen­
sion difficult. 

Fortunately, we can grasp the essential features of their analysis by em­
ploying an architectural metaphor. One way to think about Ruffini's 
almost-proof, and of Abel's complete proof, is to imagine building a tower. 

This tower has a single room on each floor, with a ladder that connects 
it to the room above. Each room contains a large sack. If you open the 
sack, millions of algebraic formulas spill out across the floor. At first sight, 
these formulas have no special structure and appear to have been har­
vested at random from the pages of algebra texts. Some are short, some 
long; some are simple, some extraordinarily complicated. A closer look, 
however, reveals family resemblances. The formulas in a given sack have 
lots of common features. The formulas in the sack in the room above 
have different common features. The higher we climb the tower, the more 
complicated the formulas in the sacks become. 

The sack on the first floor, at ground level, contains all of the formulas 
that you can build by taking the coefficients of the equation and then 
adding them together, subtracting, multiplying, and dividing them-over 
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and over, as many times as you like. In the world o f  algebraic formulas, 
once you have the coefficients, all of these "harmless" combinations 
come along pretty much free of charge. 

To climb the ladder to the floor above, you must take some formula out 
of the sack, and use it to form a radical. It might be a square root, a cube 
root, a fifth root, whatever. But the formula whose root you are taking 
must have come from that sack. You can always take it to be a pth root 
where p is prime, because more complex roots can be built from prime 
ones, and this simple observation is surprisingly helpful. 

Whichever root you decide to take, when you arrive on the second 
floor, you find a second sack, whose contents are initially identical to those 
of the sack of the first floor. But you open the sack, and throw in your 
new radical. 

Formulas breed. When Noah landed his ark on Mount Ararat, he told 
all the creatures inside it to go forth and multiply. The formulas in the sack 
do more than that: they go forth and multiply, add, subtract, and divide. 
After a few seconds of frenzied activity, the sack on the second floor is 
bulging with all possible "harmless" combinations of the coefficients of 
the equation and your new radical. Compared to the sack on the first floor, 
there are many new formulas-but they all resemble each other; each of 
them includes your radical as a new component. 

You do much the same to get to the third floor. Again you pick some 
formula from the new sack-just one-and form a new radical by taking 
some (prime) root of that formula. You carry your new radical up the lad­
der to the third floor, toss it in the sack, and wait for the formulas to carry 
out their mating rituals. 

And so on. Each new floor introduces a new radical, and new formulas 
appear in the sack. At any stage, all of those formulas are built from the 
coefficients, together with any of the radicals introduced so far. 

Eventually you reach the top floor of the tower. And you complete 
your quest-to solve the original equation by radicals-provided that, 
tucked away inside the sack in the attic, you can find at least one root of 
that equation. 

There are many conceivable towers. They depend on which formulas 
you choose, and which radicals you take. Most fail dismally, and no hint of 
the desired root can be found. But if the quest is possible, if some for­
mula built from successive radicals yields a solution, then the correspon­
ding tower does indeed have a root in its attic. For the formula tells us 
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exactly how to obtain that root by adjoining successive radicals. That is, it 
tells us exactly how to build the tower. 

····
. f 

.' 

.�.;:-

We can reinterpret the classic solutions of the cubic, the quartic, and even 
the Babylonian solution of quadratics in terms of these towers. We begin 
with the cubic, because this is complicated enough to be typical, but sim­
ple enough to be comprehensible. 

Cardano Tower has only three floors. 
The sack on the first floor contains the coefficients and all of their 

combinations. 
The ladder to the second floor requires a square root. A very particular 

square root, that of a specific formula in the first sack. The sack on the 
second floor contains all combinations of this square root, together with 
the coefficients. 

The ladder to the third floor, the attic, requires a cube root-again, a 
specific one. It is the cube root of a particular formula involving the coef­
ficients and the square root that you used to reach the floor below. Does 
the sack in the attic contain a root of the cubic equation? It does, and the 
proof is Cardano's formula. The ascent of the tower is a success. 

Ferrari Tower is taller; it has five floors. 
The first floor, as always, has a sack that contains just the combinations 

formed by the coefficients. You reach the second floor by forming harm­
less combinations and then taking a suitable square root. You reach the 

��"� �root 
Tower of Babel Cardano Tower 

Solving the quadratic, cubic, and qua rt ic .  

Ferrari Tower 
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third floor by forming harmless combinations and then taking a suitable 
cube root. You reach the fourth floor by forming harmless combinations 
and then taking a suitable square root. Finally, you clamber up to the fifth 
floor-the attic-by forming harmless combinations and then taking a 
suitable square root. 

And now, the sack in the attic does indeed contain what you are seek­
ing, a root of the quartic equation. Ferrari's formula provides the instruc­
tions for building precisely such a tower. 

The Tower of Babel, which solves the quadratic, also fits the metaphor. 
But it turns out to be a stumpy tower with only two floors. The sack on 
the first floor contains just the combinations of the coefficients. A single 
carefully chosen square root conducts you to the floor above, the attic. In­
side that sack is a root of the quadratic-in fact, both of them. The Baby­
lonian procedure for solving quadratics, the formula you were taught at 
school, tells us so. 

What about the quintic? 
Suppose that a formula to solve the quintic by radicals really does exist. 

We don't know what it is, but we can infer a lot about it nonetheless. In 
particular, it must correspond to some tower. Let me call this hypothetical 
tower the Tower of Abel. 

The Tower of Abel could contain hundreds of 
floors, and its ladders may involve all sorts of rad­
icals-1 9th roots, 37th roots, we don't know. All 
we know for sure is that the sack on the first floor 
contains just the harmless combinations of coeffi­
cients. We fondly imagine that up in the attic, 
above the clouds, is a sack containing some root 
of the quintic. 

We ask how to climb the tower, and the mathe­
matics tells us that there is only one way to get to 
the second floor. We have to take one particular 
square root. There is no other way up. 

Well, not quite. We could take all sorts of other 
roots, build a huge, tall tower. But such a tower 
cannot have a root in its attic unless some floor 
corresponds to the particular square root that I 

Tower of Abel 

no way 
up 

square 
rool 

Why the qu intic is  

unsolvab le .  
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am thinking about. And none of  the previous floors will help you reach 
the attic; building them was a waste of time and money. So any sensible 
builder will go for that square root right at the start. 

What do you need to climb the ladder to the third floor? 
There is no ladder to the third floor. You can reach the second floor, 

but then you are stuck. And if you can't reach the third floor of the pre­
sumed tower, you certainly can't get to the attic and find a root in the sack. 

In short, the Tower of Abel does not exist. All that exists is an aban­
doned attempt that peters out on the second floor; or perhaps a more 
elaborate structure with lots of unnecessary floors, which eventually pe­
ters out in exactly the same manner, for exactly the same reason. This is 
what Ruffini proved, save for one technical gap. Roughly speaking, he 
failed to prove that if harmless combinations of radicals live in the attic, 
then so do the radicals themselves. 

Ruffini's proof and Abel's towers have clear similarities. But by using 
towers, Abel improved Ruffini's tactics and filled the gap he left. Between 
them, they proved that no radical tower climbs from the coefficients of 
the quintic to its roots. In architectural language, that tells us that there is 
no formula for the root of a quintic that uses nothing more elaborate than 
radicals. Solving the quintic by radicals is as impossible as climbing to the 
Moon by repeatedly standing on your own shoulders . 

.. :;;.!�., 

..
..

..•...... 

As Christmas 1 828 drew near, Abel arranged to stay with his old friends 
Catharine and Niels Treschow in Froland. He was looking forward to visit­
ing Crelly, who lived nearby. His doctor didn't think the trip was a good idea, 
because of the state of Abel's health. In a letter to Christoffer Hansteen's 
wife, Johanne, Catharine wrote, "If only you had been in town he might 
have been content to remain. But he tried to hide how ill he really was." In 
mid-December Abel headed for Froland, bundled up against the winter 
cold. He arrived on 1 9  December wearing every scrap of clothing he had 
with him, including socks over his arms and hands. Despite his coughs and 
cold shivers, he plowed ahead with his mathematics, happy to work in the 
Treschows' parlor surrounded by their children. He enjoyed the company. 

Abel was still trying to land a permanent position. Even his temporary 
post at Oslo was in doubt. Over Christmas he focused his main efforts on 
securing the job in Berlin. His friend August Crelle, busy behind the 
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scenes, had persuaded the Department o f  Education to create a mathe­
matical institute and was angling for Abel to be appointed as one of its 
professors. He had obtained support from the scientific giant Alexander 
von Humboldt, together with a recommendation from Gauss and another 
from Adrien-Marie Legendre, a prominent member of the French Acad­
emy. Crelle advised the education minister that Abel was willing to accept 
a position in Berlin, but that the authorities should move quickly because 
he was in demand elsewhere, notably Copenhagen. 

Abel was due to leave Froland for Oslo on 9 January, but his coughs 
and chills had worsened and he spent most of his time confined to his 
room. His intended in-laws, the Kemps, became very worried. On the 
morning of his planned departure he was coughing violently and spitting 
blood. The family doctor was immediately called to the house, and he pre­
scribed bed rest and constant nursing. Crelly acted as nurse, and her loving 
attentions and various medications led to a distinct improvement. Within 
a few weeks Abel was allowed to sit in a chair for short periods. He had to 
be restrained from doing any mathematics. 

Legendre wrote to say how impressed he was with Abel's work on ellip­
tic functions, and urged the young man to publish his solution to the 
problem of deciding when an equation could be solved by radicals : "I 
urge you to let this new theory appear in print as quickly as you are able. It 
will be of great honor to you, and will universally be considered the great­
est discovery which remained to be made in mathematics." While some 
prominent mathematicians, actively or through neglect, were hindering 
the publication of Abel's seminal works, his reputation in other quarters 
was growing fast. 

Toward the end of February 1 829, Abel's doctor realized that he was 
never going to recover, and the best he could hope for was to keep the ill­
ness at bay as long as possible. The doctor sent Abel's former teacher 
Bernt Holmboe a certificate, reporting the young man's state of health: 

. . .  Shortly after his arrival at Froland Ironworks he suffered a severe 
attack of pneumonia with considerable expectoration of blood, 
which ceased after a brief period. But a chronic cough and great 
weakness have compelled him to rest in bed, where he must still re­
main; furthermore, he cannot be permitted to be exposed to the 
slightest variation in temperature. 



9 4  W H Y  B E A U T Y  I S  T R U T H  

More serious, the dry cough with s tinging pains in  the chest makes 
it very probable that he suffers from hidden chest and bronchial tu­
bercles, which easily can result in a subsequent chest phthisis, par­
tially on account of his constitution. 

Due to this precarious state of health . . .  it is most unlikely that he 
will be able to return to Oslo before the spring. Until then, he will be 
unable to discharge the duties of his office, even if the outcome of 
his illness should be the most desirable. 

Crelle received the bad news in Berlin, and redoubled his efforts to se­
cure Abel a position, advising the German minister that it would be good 
to transfer Abel to a warmer climate. 

On 8 April, Crelle sent his protege good news : 

The Education Department has decided to call you to Berlin for an 
appointment . . .  In what capacity you will be appointed and how 
much you will be paid I cannot tell you, for I do not know myself . . .  
I only wanted to hurry to let you hear the main news; you may be 
certain that you are in good hands. For your future you need no 
longer have any concern; you belong to us and are secure. 

If only. 
Abel was too ill to travel . He had to stay in Froland, where despite 

Crelly's nursing he became weaker and weaker, and his cough grew 
worse. He left his bed only to allow the sheets to be changed. When he 
tried to do some mathematics, he found he was unable to write. He be­
gan to dwell on the past, and his poverty, but he did not take his feelings 
out on the people he loved, remaining cooperative and good-natured to 
the very end. 

Crelly naturally found it more and more difficult to hide her distress 
from her fiance. Marie or Hanna kept her company at the bedside. Abel's 
worsening cough was stopping him from sleeping, and the family hired a 
nurse to look after him overnight so that Crelly could get some rest. 

On the morning of 6 April, after a night of severe pain, Abel died. 
Hanna wrote, "He endured his worst agony during the night of 5 April. 
Toward morning he became more quiet, and in the forenoon, at 1 1  
o'clock, he expired his last sigh. My sister and his fiancee were with him in 
the last moment, and saw his quiet passing into the arms of death." 
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Five days later, Crelly wrote to Catharine Hansteen's sis ter Henriette 
Fridrichsen, asking her to tell Catharine the sad news. "My dearest love, 
yes, only duty could make me demand this, for l owe your sis ter, Fru 
Hansteen, so much. I take the pen with trembling hand to ask you to in­
form her that she has lost a kind, devout son who loved her so infinitely. 

"My Abel is dead! . . . I have lost all on earth. Nothing, nothing have I 
left. Pardon me, the unfortunate can write no more. Ask her to accept the 
enclosed lock of my Abel's hair. That you will prepare your sister for this 
in the most lenient way asks your miserable C. Kemp." 
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M athematicians are never satisfied. 
Whenever a problem is solved it only raises new questions. Soon 

after Abel's death, his proof that some quintics can't be solved by 
radicals started to become recognized. But Abel's work was j ust the 

start. Although all previous attempts to solve all quintics had ground to a 
halt, a few very clever mathematicians had proved that some quintics can 
be solved by radicals. Not just obvious ones, like x 5  - 2 = 0, where x = �, 
but surprising ones like x5 + 1 5x + 1 2  = 0, though the solution is too com­
plicated to state here. 

This was a puzzle. If some quintics are solvable and some not, what 
distinguishes one kind from the other? 

The answer to this question changed the course of mathematics, and 
mathematical physics. Even though the answer was given more than 1 70 
years ago, it is still yielding important new discoveries. In retrospect, it is 
astonishing how far-reaching are the consequences of an innocent ques­
tion about the internal structure of mathematics. Solving quintics, it ap­
peared, had no practical use whatsoever. If some problem in engineering 
or astronomy involved a quintic, there were numerical methods to deter­
mine a solution to as many decimal places as were needed. The solvabil­
ity-or not-of a quintic by radicals was a clas sic example of "pure" 
mathematics, of questions asked for reasons that interested no one but 
mathematicians. 

How wrong you can be. 
Abel had discovered an obstacle to the solution of certain quintics by 

radicals. He had proved that this obstacle genuinely prevented such solu­
tions existing for at least some quintics. The next step forward, the pivot 

9 7  



9 8  W H Y  B E A U T Y  I S  T R U T H  

upon which our entire story revolves, was made by someone who looked 
the gift horse firmly in the teeth and asked the kind of question that math­
ematicians cannot resist when some major problem has been solved. "Yes, 
that's all very nice . . .  but why does it really work?" 

The attitude may seem rather negative, but time and time again it has 
proved its worth. The underlying philosophy is that most mathematical 
problems are too difficult for anyone to solve. So when somebody man­
ages to solve something that has baffled all predecessors, merely celebrat­
ing the great solution is not enough. Either the solver got lucky 
(mathematicians do not believe in that sort of luck) or some special rea­
son made the solution possible. And if it proves possible to understand 
the reason . . . why, lots of other problems might yield to similar methods. 

So while Abel was polishing off the specific question, "Can every quin­
tic be solved?" and getting a clear "no," an even deeper thinker was 
wrestling with a far more general issue: which equations can be solved by 
radicals, and which cannot? To be fair, Abel had begun to think along those 
lines, and might have found the answer if tuberculosis had spared him. 

The person who was to change the course of mathematics and science 
was Evariste Galois, and his life story is one of the most dramatic, and 
also the most tragic, in the history of mathematics. His magnificent dis­
coveries were very nearly lost altogether. 

If Galois had not been born, or if his work had really been lost, some­
one would no doubt have made the same discoveries eventually. Many 
mathematicians had voyaged across the same intellectual territory, missing 
the great discovery by a whisker. In some alternative universe, someone 
with Galois's gifts and insights (perhaps a Niels Abel who avoided tuber­
culosis for a few more years) would eventually have penetrated the same 
circle of ideas. But in this universe, it was Galois. 

He was born on 25 October 1 81 1 , in Bourg-la-Reine, in those days a 
small village on the outskirts of Paris. Now it is a suburb in the departe­
ment Hau-de-Seine, at the intersection of the N20 and the D60 highways. 
The D60 is now named Avenue Galois. In 1 792, the village of Bourg-Ia­
Reine had been renamed Bourg-I'Egalite, a name that reflected the era's 
political turmoil and its ideology: "Queen Town" had given way to 
"Equality Town." In 1 8 1 2, the name reverted to Bourg-la-Reine, but revo­
lution was still in the air. 
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The father, Nicolas-Gabriel Galois, was a republican and leader of the 
village Liberal Party-Liberte in the town of Egalite-whose main policy 
was the abolition of the monarchy. When, in a fudged compromise of 
1 81 4, King Louis XVIII was returned to the throne, Nicolas-Gabriel be­
came the town mayor, which cannot have been a comfortable office for 
someone of his political leanings. 

The mother, Adelaide-Marie, was born to the Demante family. Her fa­
ther was a jurisconsult, a paralegal expert whose job was to offer opinions 
about legal cases. Adelaide-Marie was a fluent reader of Latin and passed 
her classical education on to her son. 

For his first twelve years, Evariste remained at home, educated by his 
mother. He was offered a place at the college of Reims when he was ten, 
but his mother seems to have thought it too early for him to leave home. 
But in October 1 823, he started attending the College de Louis-Ie-Grand, 
a preparatory school. Soon after Evariste arrived, the students refused to 
chant in the school chapel, and the young Galois saw at first hand the fate 
of would-be revolutionaries: a hundred pupils were promptly expelled. 
Unfortunately for mathematics, the lesson did not deter him. 

For his first two years he was awarded first prize in Latin, but then he 
became bored. In consequence, the school insisted that he repeat his 
classes to improve his performance, but of course this made him even 
more bored, and things went from bad to worse. What saved Galois from 
the slippery slope to oblivion was mathematics, a subject with enough in­
tellectual content to retain his interest. And not just any mathematics : Ga­
lois went straight to the classics : Legendre's Elements of Geometry. It was a 
bit like a modern physics student starting out by reading the technical pa­
pers of Einstein. But in mathematics there is a kind of threshold effect, an 
intellectual tipping point. If a student can j ust get over the first few 
humps, negotiate the notational peculiarities of the subject, and grasp that 
the best way to make progress is to understand the ideas, not just learn 
them by rote, he or she can sail off merrily down the highway, heading for 
ever more abstruse and challenging ideas, while an only slightly duller stu­
dent gets stuck at the geometry of isosceles triangles. 

Just how hard Galois had to work to understand Legendre's seminal 
work is open to dispute, but in any case it did not daunt him. He started 
to read the technical papers of Lagrange and Abel; not surprisingly, his 
later work concentrated on their areas of interest, in particular the theory 
of equations. Equations were possibly the only things that really grabbed 
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Galois 's attention. His ordinary schoolwork suffered in proportion to his 
devotion to the works of the mathematical greats. 

At school, Galois was untidy, a habit he never lost. He baffled his 
teachers by solving problems in his head instead of "showing his work." 
This is a fetish of mathematics teachers that afflicts many a talented 
youngster today. Imagine what would happen to a budding young foot­
baller if every time he scored a goal, the coach demanded that he write 
out the exact sequence of tactical steps he followed, or else the goal 
would be invalid. There was no such sequence. The player saw an open­
ing and put the ball where anyone who understood the game would know 
it had to go. 

So it is with able young mathematicians. 
Ambition led Galois to aim high: he wanted to continue his studies at 

one of the most prestigious institutions in France, the Ecole Poly tech­
nique, the breeding ground of French mathematics. But he ignored the 
advice of his mathematics teacher, who tried to make the young man work 
in a systematic manner, show his work, and generally make it possible for 
the examiners to follow his reasoning. Fatally underprepared and overcon­
fident, Evariste took the entrance examination-and failed. 

Twenty years later, an influential French mathematician named Orly 
Terquem, who edited a prestigious journal, offered an explanation for Ga­
lois's failure: ''A candidate of superior intelligence is lost with an examiner 
of inferior intelligence. Because they do not understand me, I am a bar­
barian." A modern commentator, more aware of the need for communi­
cation skills, would temper that criticism with the observation that a 
student of superior intelligence has to make allowances for those less able. 
Galois did not help his case by being uncompromising. 

So Galois remained at Louis-Ie-Grand, where he had a rare piece of 
good fortune. A teacher named Louis-Paul Richard recognized the young 
man's talent, and Galois enrolled in an advanced mathematics course un­
der Richard's tuition. Richard formed the opinion that Galois was so tal­
ented that he should be admitted to the Ecole Poly technique without 
being examined. Very likely, Richard had an idea of what would happen if 
Galois were to take the examination. There is no evidence that Richard 
ever explained his view to the Ecole Poly technique. If he did, they took 
no notice. 
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By 1 829, Galois had published his first research paper, a competent but 
pedestrian article on continued fractions. His unpublished work was more 
ambitious: he had been making fundamental contributions to the theory 
of equations. He wrote up some of his results and sent them to the 
French Academy of Sciences, for possible publication in their journal. 
Then, as now, any paper submitted for publication would be sent to a ref­
eree, an expert in the field concerned, who made recommendations about 
the novelty, value, and interest of the work. In this case the referee was 
Cauchy, then probably France's leading mathematician. Having already 
published in areas close to those involved in Galois 's paper, he was a natu­
ral choice. 

Unfortunately, he was also extremely busy. There is a prevalent myth 
that Cauchy lost the manuscript; some sources suggest that he threw it 
away in a fit of pique. The truth seems more prosaic. There is a letter from 
Cauchy to the Academy, dated 1 8  January 1 830, in which he apologizes for 
not presenting a report on the work of "young Galoi," explains that he 
was "indisposed at home," and also mentions a memoir of his own. 

This letter tells us several things. The first is that Cauchy had not 
thrown Galois 's manuscript away but still had it six months after submis­
sion. The second is that Cauchy must have read the manuscript and de­
cided that it was important enough to be worth drawing to the Academy's 
attention. 

But when Cauchy turned up at the next meeting he presented only his 
own paper. What had happened to Galois 's manuscript? 

The French historian Rene Taton has argued that Cauchy was im­
pressed by Galois 's ideas-perhaps a little too impressed. So instead of 
reading the work to the Academy as originally intended, he advised Galois 
to write a more extensive and presumably much improved exposition of 
the theory, to be submitted for the Grand Prize in Mathematics, a major 
honor. There is no documentary evidence to confirm this claim, but we 
do know that in February 1 830 Galois submitted just such a memoir for 
the Grand Prize. 

We cannot know exactly what was in this document, but its general 
contents can be inferred from Galois 's surviving writings. It is clear that 
history might have been very different if the far-reaching implications of 
his work had been fully appreciated. Instead, the manuscript just vanished. 

One possible explanation appeared in 1 83 1  in The Globe, a journal pub­
lished by the Saint-Simonians, a neo-Christian socialist movement. The 
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Globe reported a court case in  which Galois was accused of publicly 
threatening the life of the king, and suggested that "This memoir . . .  de­
served the prize, for it could resolve some difficulties that Lagrange had 
failed to do. Cauchy had conferred the highest praise on the author about 
this subject. And what happened? The memoir is lost and the prize is 
given without the participation of the young savant." 

The big problem here is to decide the factual basis of the article. 
Cauchy had fled the country in September 1 830 to avoid the revolutionar­
ies' anti-intellectual attentions, so the article cannot have been based on 
anything he had said. Instead, it looks as though the source was Galois 
himself. Galois had a close friend, Auguste Chevalier, who had invited him 
to join a Saint-Simonian commune. It seems likely that Chevalier was the 
reporter-Galois was otherwise engaged at the time, on trial for his life­
and if so, the story must have come from Galois. Either he made it all up, 
or Cauchy had indeed praised his work. 

:;;.!.� 
. .• .. 

Let us return to 1 829. On the mathematical front, Galois was becoming 
increasingly frustrated by the apparent inability of the mathematical com­
munity to give him the recognition he craved. Then his personal life began 
to fall to pieces. 

All was not well in the village of Bourg-Ia-Reine. The village mayor, 
Galois 's father, Nicolas, became involved in a nasty political dispute, 
which enraged the village priest. The priest took the decidedly uncharita­
ble step of circulating malicious comments about Nicolas's relatives and 
forging Nicolas's own signature on them. In despair, Nicolas committed 
suicide by suffocating himself. 

This tragedy happened just a few days before Galois's final opportunity 
to pass the entrance examination for the Ecole Poly technique. It did not 
go well. Some accounts have Galois throwing the blackboard eraser into 
the examiner's face-it was probably a cloth, not a lump of wood, but 
even so, the examiner would not have been favorably impressed. In 1 899, 
J. Bertrand provided some details that suggest that Galois was asked a 
question he had not anticipated, and lost his temper. 

For whatever reason, Galois failed the entrance exam, and now he was 
in a bind. Having been utterly confident that he would pass-he really 
does seem to have been an arrogant young man-he had not bothered to 
prepare for the exams to enter the only alternative, the Ecole Preparatoire. 
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Nowadays, this institution, renamed the Ecole Normale, is more presti­
gious than the Poly technique, but in those days it came a poor second. Ga­
lois hastily boned up on the necessary material, passed his mathematics 
and physics with flying colors, made a mess of his literature exam, and was 
accepted anyway. He obtained qualifications in both science and letters at 
the end of 1 829. 

As I mentioned, in February 1 830 Galois submitted a memoir on the 
theory of equations to the Academy for the Grand Prize. The secretary, 
Joseph Fourier, took it home to give it the once-over. The ill-fortune that 
constantly dogged Galois's career struck again: Fourier promptly died, 
leaving the memoir unread. Worse, the manuscript could not be found 
among his papers. However, there were three other committee members 
in charge of the prize: Legendre, Sylvestre-Fran<;ois Lacroix, and Louis 
Poinsot. Maybe one of them lost it. 

Galois, not surprisingly, was furious. He became convinced that what 
had happened was a conspiracy of mediocre minds to s tifle the efforts of 
genius; he quickly found a scapegoat, the oppressive Bourbon regime. 
And he wanted to play a role in its destruction. 

Six years earlier, in 1 824, King Charles X had come to the throne of 
France, following Louis XVIII, but he was far from popular. The liberal 
opposition did well in the 1 827 elections and even better in 1 830, gaining a 
majority. Charles, facing the imminent prospect of forced abdication, at­
tempted a coup; on 25 July he issued a proclamation suspending freedom 
of the press. He misread the mood of the people, who promptly rose in 
revolt, and after three days a compromise was reached: Charles was re­
placed as king by the duke of Orleans, Louis-Philippe. 

The students of the Ecole Poly technique, the university Galois had 
hoped to attend, played a significant role in these events, demonstrating on 
the streets of Paris. And where was the arch antimonarchist Galois during 
this fateful period? Locked away inside the Ecole Preparatoire along with his 
fellow students. The Director, Guigniault, had decided to play safe. 

Galois was so incensed at being denied his place in history that he 
wrote a blistering attack on Guigniault in the Gazette des Ecoles: 

The letter which M. Guigniault placed in the lycee yesterday, on the 
account of one of the articles in your journal, seemed to me most 
improper. I had thought that you would welcome eagerly any way of 
exposing this man. 
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Here are the facts, which can be  vouched for by forty-six students. 
On the morning of 28 July, when several students of the Ecole 

Normale wanted to join in the struggle, M. Guigniault told them, 
twice, that he had the power to call the police to restore order in the 
school. The police on 28 July! 

The same day, M. Guigniault told us with his usual pedantry: 
"There are many brave men fighting on both sides. If I were a sol­
dier, I would not know which to decide. Which to sacrifice, liberty or 
LEG ITIMACY?" 

There is the man who next day covered his hat with an enormous 
tricolor cockade [a symbol of the republicans] . There are our liberal 
doctrines! 

The editor published the letter but removed the author's name from it. 
The director promptly expelled Galois for publishing an anonymous letter. 

Galois retaliated by joining the Artillery of the National Guard, a para­
military organization that was a hotbed of republicanism. On 21 Decem­
ber 1 830, this unit, very probably including Galois, was stationed in the 
vicinity of the Louvre. Four ex-ministers had gone on trial, and the public 
mood was ugly: they wanted the men executed, and were prepared to riot 
if they were not. But just before the verdict was announced, the Artillery 
of the National Guard was withdrawn and replaced by the regular Na­
tional Guard, together with other soldiers who were loyal to the King. The 
verdict of a jail sentence was announced, the riot failed to materialize, and 
ten days later, Louis-Philippe disbanded the Artillery of the National 
Guard as a security risk. Galois was having no more success as a revolu­
tionary than he had had as a mathematician. 

Practical issues now became more urgent than politics: he needed to 
make a living. Galois set himself up as a private mathematics tutor, and 
forty students signed up for a course of advanced algebra. We know that 
Galois was not a good written expositor, and it's reasonable to guess that 
his teaching was no better. Probably his classes were laced with political 
commentary; almost certainly they were too difficult for ordinary mortals. 
At any rate, the enrollment rapidly dwindled. 

Galois had still not given up on his mathematical career, and he submit­
ted yet a third version of his work to the Academy, entitled On the Condi­
tions of Solvability of Equations by Radicals. With Cauchy having fled Paris, 
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the referees were Simeon Poisson and Lacroix. When two months passed 
without any response, Galois wrote to ask what was happening. No one 
replied. 

By the spring of 1 83 1 ,  Galois was behaving ever more erratically. On 
18 April the mathematician Sophie Germain, who had greatly impressed 
Gauss when she first began her research in 1 804, wrote a letter about Ga­
lois to Guillaume Libri: "They say he will go completely mad, and I fear 
this is true." Never the most stable person, he was now verging on full­
blooded paranoia. 

That month, the authorities arrested nineteen members of the Artillery 
because of the events at the Louvre and put them on trial for sedition, but 
the jury acquitted the men. The Artillery held a celebration on 9 May in 
which about two hundred Republicans assembled for a banquet at the 
restaurant Vendanges des Bourgogne. Every one of them wanted to see 
Louis-Philippe overthrown. The novelis t  Alexandre Dumas, who was 
present, wrote, "It would be difficult to find in all Paris, two hundred per­
sons more hostile to the government than those to be found reunited at 
five o'clock in the afternoon in the long hall on the ground floor above the 
garden." As the event became more and more riotous, Galois was seen 
with a glass in one hand and a dagger in the other. The participants inter­
preted this gesture as a threat to the king, approved wholeheartedly, and 
ended up dancing in the streets. 

The next morning, Galois was arrested at his mother's house-which 
suggests that there had been a police spy at the banquet-and charged 
with threatening the king's life. For once he seems to have learned some 
political sense, because at his trial he admitted everything, with one modi­
fication: he claimed that he had proposed a toast to Louis-Philippe, and 
had gestured with the dagger while adding the words, "if he turns traitor." 
He lamented that these vital words had been drowned in the uproar. 

Galois made it clear, however, that he did expect Louis-Philippe to be­
tray the people of France. When the prosecutor asked whether the ac­
cused could "believe this abandonment of legality on the part of the 
king," Galois responded, "He will soon turn traitor if he has not done so 
already." Pushed further, he left no doubt as to his meaning: "The trend in 
government can make one suppose that Louis-Philippe will betray one day 
if he hasn't already." Despite this, the jury acquitted him. Perhaps they felt 
as he did. 
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On 15  June, Galois was a t  liberty. Three weeks later, the Academy re­
ported on his memoir. Poisson had found it "incomprehensible." The re­
port itself said this: 

We have made every effort to understand Galois 's proof. His reason­
ing is not sufficiently clear, not sufficiently developed, for us to judge 
its correctness, and we can give no idea of it in this report. The au­
thor announces that the proposition which is the special object of 
this memoir is part of a general theory susceptible of many applica­
tions. Perhaps it will transpire that the different parts of a theory are 
mutually clarifying, are easier to grasp together rather than in isola­
tion. We would then suggest  that the author should publish the 
whole of his work in order to form a definitive opinion. But in the 
state which the part he has submitted to the Academy now is, we 
cannot propose to give it approval. 

The most unfortunate feature of this report is that it may well have 
been entirely fair. As the referees pointed out: 

[The memoir] does not contain, as [its] title promised, the condition 
of solvability of equations by radicals ;  indeed, assuming as true 
M. Galois's proposition, one could not derive from it any good way 
of deciding whether a given equation of prime degree is solvable or 
not by radicals, since one would first have to verify whether this 
equation is irreducible and next whether any of its roots can be ex­
pressed as a rational fraction of two others. 

The final sentence here refers to a beautiful criterion for solvability by 
radicals of equations of prime degree that was the climax of Galois 's 
memoir. It is indeed unclear how this test can be applied to any specific 
equation, because you need to know the roots before the test can be ap­
plied. But without a formula, in what sense can you "know" the roots? As 
Tignol says, "Galois's theory did not correspond to what was expected; it 
was too novel to be readily accepted." The referees wanted some kind of 
condition on the coefficients that determined solubility; Galois gave them a 
condition on the roots. The referees' expectation was unreasonable. No 
simple criterion based on the coefficients has ever been found, nor is one 
remotely likely. But hindsight cannot help Galois. 
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On 1 4  July, Bastille Day, Galois and his friend Ernest Duchatelet were at 
the head of a Republican demonstration. Galois was wearing the uniform 
of the disbanded Artillery and carrying a knife, several pistols, and a 
loaded rifle. It was illegal to wear the uniform, and also to be armed. Both 
men were arrested on the Pont-Neuf, and Galois was charged with the 
lesser offense of illegally wearing a uniform. They were sent to the jail at 
Sainte-Pelagie to await trial. 

While in j ail, Duchatelet drew a picture on the wall of his cell showing 
the king's head, labeled as such, lying next to a guillotine. This presumably 
did not help their cause. 

Duchatelet stood trial first; then it was Galois 's turn. On 23 October he 
was tried and convicted; his appeal was turned down on 3 December. By 
this time he had spent more than four months in jail. Now he was sen­
tenced to another six months. He worked for a while on his mathematics ;  
then in the cholera epidemic of 1 832 he was transferred to a hospital and 
later put on parole. Along with his freedom he experienced his first and 
only love affair, with a certain "Stephanie D," as his doodles identify her. 

From this point on it takes a lot of guesswork to interpret the scanty 
historical record. For a time, no one knew Stephanie's surname or what 
sort of person she was. This mystery added to her romantic image. Galois 
wrote her full name on one of his manuscripts, but at some later point he 
scrawled all over it, rendering it illegible. Forensic work by the historian 
Carlos Infantozzi, who examined the manuscript very carefully, revealed 
the lady as Stephanie-Felicie Poterin du Motel. Her father, Jean-Louis Au­
guste Poterin du Motel, was resident physician at the Sieur Faultrier, where 
Galois spent the last few months of his life. 

We don't know what Jean-Louis thought of the relationship, but it 
seems unlikely that he approved of a penniless, unemployed, dangerously 
intense young man with extremist political views and a criminal record 
paying court to his daughter. 

We do know a little about Stephanie's opinions, but only through some 
scribbled sentences that Galois presumably copied from her letters. 
There is much mystery surrounding this interlude, which has a crucial 
bearing on subsequent events. Apparently, Galois was rejected and took it 
very badly, but the circumstances cannot be determined. Was it all in his 
mind-an infatuation that was never reciprocated? Did Stephanie en­
courage his advances? Did she then get cold feet? The very characteristics 
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likely to  repel her father might have been dis tinctly attractive to  the 
daughter. 

As far as Galois was concerned, the relationship was certainly serious. 
In May, he wrote to his close friend Chevalier, "How can I console myself 
when in one month I have exhausted the greatest source of happiness a 
man can have?" On the back of one of his papers he made fragmentary 
copies of two letters from Stephanie. One begins, "Please let us break up 
this affair," which suggests that there was something to break up. But it 
continues, "and do not think about those things which did not exist and 
which never would have existed," giving the contrary impression. The 
other contains the following sentences: "I have followed your advice and I 
have thought over what . . .  has . . .  happened . . .  In any case, Sir, be as­
sured there never would have been more. You are assuming wrongly and 
your regrets have no foundation." 

Whether he imagined the whole thing and his feelings were never recip­
rocated, or he initially received some form of encouragement only to be 
subsequently rejected, it looks as though Galois suffered the worst kind of 
unrequited love. Or was the whole affair perhaps more sinister? Shortly af­
ter the breakup with Stephanie, or what Galois interpreted as a breakup, 
someone challenged him to a duel. The ostensible reason was that this 
person objected to Galois 's advances toward the young lady, but yet again 
the circumstances are veiled in mystery. 

The standard story was one of political intrigue. Writers like Eric Tem­
ple Bell and Louis Kollros tell us that Galois's political opponents found 
his infatuation with Mlle. du Motel to be the perfect excuse to eliminate 
their enemy on a trumped-up "affair of honor." One rather wild sugges­
tion is that Galois was the victim of a police spy. 

These theories now seem implausible. Dumas states in his Memoirs that 
Galois was killed by Pescheux D'Herbinville, a fellow Republican whom 
Dumas described as "a charming young man who made silk-paper car­
tridges which he would tie up with silk ribbons." These were an early form 
of cracker, of the kind now familiar at Christmas. D'Herbinville was 
something of a hero to the peasantry, having been one of the nineteen 
Republicans acquitted on charges of conspiring to overthrow the govern­
ment. Certainly he was not a spy for the police, because Marc Caussidiere 
named all such spies in 1 848 when he became chief of police. 

The police report on the duel suggests that the other participant was 
one of Galois's revolutionary comrades, and the duel was exactly what it 
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appeared to be. This theory is largely borne out by Galois's own words on 
the matter: "I beg patriots and my friends not to reproach me for dying 
otherwise than for my country. 1 die the victim of an infamous coquette. 
It is in a miserable brawl that my life is extinguished. Oh! why die for so 
trivial a thing, for something so despicable! . . .  Pardon for those who have 
killed me, they are of good faith." Either he was unaware that he was the 
victim of a political plot, or there was no plot. 

It does appear that Stephanie was at least a proximate cause of the duel. 
Before departing for the engagement, Galois left some final doodles on 
his table. They include the words "Une femme," with the second word 
scribbled out. But the ultimate cause is as opaque as much else in this tale. 

The mathematical story is much clearer. On 29 May, the eve of the 
duel, Galois wrote to Auguste Chevalier, outlining his discoveries. Cheva­
lier eventually published the letter in the Revue Encyclopedique. It sketches 
the connection between groups and polynomial equations, stating a neces­
sary and sufficient condition for an equation to be solvable by radicals. 

Galois also mentioned his ideas about elliptic functions and the integra­
tion of algebraic functions, and other things too cryptic to be identifiable. 
The scrawled comment "I have no time" in the margins has given rise to 
another myth: that Galois spent the night before the duel frantically writ­
ing out his mathematical discoveries. But that phrase has next to it "(Au­
thor's note) ," which hardly fits such a picture; moreover, the letter was an 
explanatory accompaniment to Galois 's rejected third manuscript, com­
plete with a marginal note added by Poisson. 

The duel was with pistols. The postmortem report states that they were 
fired at 25 paces, but the truth may have been even nastier. An article from 
the 4 June 1 832 issue of Ie Precursor reported: 

Paris, 1 June-A deplorable duel yesterday has deprived the exact 
sciences of a young man who gave the highest expectations, but 
whose celebrated precocity was lately overshadowed by his political 
activities. The young Evariste Galois . . .  was fighting with one of his 
old friends, a young man like himself, like himself a member of the 
Society of Friends of the People, and who was known to have fig­
ured equally in a political trial. It is said that love was the cause of the 
combat. The pistol was the chosen weapon of the adversaries, but 
because of their old friendship they could not bear to look at one an­
other and left the decision to blind fate. At point-blank range they 
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were each armed with a pistol and fired. Only one pistol was 
charged. Galois was pierced through and through by a ball from his 
opponent; he was taken to the Hospital Co chin where he died in 
about two hours. His age was 22. L.D., his adversary, is a bit younger. 

Could "L.D." refer to Pescheux d'Herbinville? Perhaps. The letter D is 
acceptable because of the variable spelling of the period; the L may have 
been a mistake. The article is unreliable on details : it gets the date of the 
duel wrong, and also the day Galois died and his age. So the initial might 
also be wrong. 

The cosmologist and writer Tony Rothman has a more convincing the­
ory. The person who best fits the description here is not d'Herbinville but 
Duchatelet, who was arrested with Galois on the Pont-Neuf. Galois's bi­
ographers Robert Bourgne and Jean-Pierre Azra give Duchatelet's Chris­
tian name as "Ernest," but that might be wrong, or again the L may be 
wrong. To quote Rothman, "We arrive at a very consistent and believable 
picture of two old friends falling in love with the same girl and deciding 
the outcome by a gruesome version of Russian roulette." 

This theory is also consistent with a final horrific twist to the tale. Ga­
lois was hit in the stomach, a wound that was almost always fatal. If the 
duel was at point-blank range, this is no great surprise; if at 25 paces, it is 
the final example of his cursed luck. 

He did not die two hours later, as Ie Precursor says, but in the Hospital 
Cochin the next day, on 3 1  May. The cause of death was peritonitis, and 
he refused the office of a priest. On 2 June 1 832 Galois was buried in the 
common ditch at the cemetery of Montparnasse. 

His letter to Chevalier ended with these words: "Ask Jacobi or Gauss 
publicly to give their opinion, not as to the truth, but as to the importance 
of these theorems. Later there will be, I hope, some people who will find 
it to their advantage to decipher all this mess." 

····. f .. ···· 
.. �.:.� .. 

But what did Galois actually accomplish? What was the "mess" referred to 
in his final letter? 

The answer is central to our tale, and not easily stated in a few sen­
tences. Galois introduced a new point of view into mathematics, he 
changed its content, and he took a necessary but unfamiliar step into ab­
straction. In Galois's hands, mathematics ceased to be the study of num-
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bers and shapes-arithmetic, geometry, and ideas that developed out of 
them like algebra and trigonometry. It became the study of structure. 
What had been a study of things became a study of processes. 

We should not give Galois all the credit for this transformation. He was 
riding a wave that had been set in motion by Lagrange, Cauchy, Ruffini, 
and Abel. But he rode it with such skill that he made it his own; he was the 
first person seriously to appreciate that mathematical questions could 
sometimes be best understood by transporting them into a more abstract 
realm of thought. 

It took a while for the beauty and value of Galois's results to percolate 
into the general mathematical consciousness. In fact they were very nearly 
lost. They were rescued by Joseph-Louis Liouville, the son of a captain in 
Napoleon's army who became a professor at the College de France. Liou­
ville spoke to the French Academy-the body that had mislaid or rejected 
Galois's three memoirs-in the summer of 1 843. "I hope to interest the 
Academy," he began, "in announcing that among the papers of Evariste 
Galois I have found a solution, as precise as it is profound, of this beauti­
ful problem: whether or not there exists a solution by radicals . . .  " 

If Liouville had not bothered to wade through the luckless revolution­
ary's often untidy and confusing manuscripts, and had not devoted con­
siderable time and effort to puzzling out what the author intended, the 
manuscripts might well have been thrown out with the rubbish, and group 
theory would have had to await some later rediscovery of the same ideas. 
So mathematics owes Liouville an enormous debt. 

As understanding of Galois's methods grew, a new and powerful math­
ematical concept came into being: that of a group. An entire branch of 
mathematics, a calculus of symmetry called group theory, came into being 
and has since invaded every corner of mathematics. 

Galois worked with groups of permutations-ways to rearrange a list of 
objects. In his case, the objects were the roots of an algebraic equation. 
The simplest interesting example is a general cubic equation, with three 
roots a, b, and c. Recall that there are six ways to permute these symbols, 
and that-following Lagrange and Ruffini-we can multiply any two per­
mutations by performing them in turn. We saw, for example, that cba X 
bca = acb. Proceeding in this way, we can build up a "multiplication table" 
for all six permutations. It's easier to see what's going on if we assign 
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names to  each permutation, say by  letting J = abc, R = acb, Q = bac, V = 
bca, U = cab, and P = cba. Then the multiplication table looks like this: 

I U V p Q R 
I I U V p Q R 

U U V I R P Q 

V V I U Q R P 

P P Q R I U V 

Q Q R P V I U 

R R P Q u V I 

Mu lt ip l ication tab le for the s ix permuta-

tions of the roots of a cubic equation .  

Here the entry in row X and column Yis the product XY, which means 
"do Y, then do X "  

Galois realized that a very simple and obvious feature o f  this table is 
crucially important. The product of any two permutations is itself a per­
mutation-the only symbols appearing in the table are J, U, V, P, Q R. 
Some smaller collections of permutations have the same "group prop­
erty": the product of any two permutations in the collection is also in the 
collection. Galois called such a collection of permutations a group. 

For example, the collection [ l,  U, V ]  gives a smaller table: 

I U V 
I I U V 

U U V I 

V V I U 

M u lt ip l ication tab le  for a sub-

grou p of three perm utations. 

and only those three symbols appear. When, as here, one group is part of 
another, we call it a subgroup. 
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Other subgroups, namely [1, P] ,  [1, Q] , and [1, R] ,  contain only two per­
mutations. There is also the subgroup [1] that contains only I It can be 
proved that the six subgroups just listed are the only subgroups of the 
group of all permutations on three symbols. 

Now, said Galois (though not in this language) , if we choose some cu­
bic equation, we can look at its symmetries-those permutations that pre­
serve all algebraic relations between the roots. Suppose, for example, that 
a + lJ = 5, an algebraic relation between the roots a and b. Is the permuta­
tion R a symmetry? Well, if we check the definition above, R keeps a as it 
was and swaps b with c, so the condition a + C = 5 must also hold. If it 
doesn't, R is definitely not a symmetry. If it does, you check any other 
valid algebraic relations among the roots, and if R passes all these tests, it 
is a symmetry. 

Working out precisely which permutations are symmetries of a given 
equation is a difficult technical exercise. But there is one thing we can be 
sure of without doing any calculations at all. The collection of all symme­
tries of a given equation must be a subgroup of the group of all permuta­
tions of the roots. 

Why? Suppose, for instance, that both P and R preserve all algebraic re­
lations among the roots. If we take some relation and then apply R, we get 
a valid relation. If we then apply P, we again get a valid relation. But apply­
ing R and then P is the same as applying PRo So PR is a symmetry. In other 
words, the collection of symmetries has the group property. 

This straightforward fact underlies the whole of Galois's work. It tells 
us that associated with any algebraic equation there is a group, its symme­
try group-now called its Galois group to honor the inventor. And the Ga­
lois group of an equation is always a subgroup of the group of all 
permutations of the roots. 

From this key insight a natural line of attack emerges. Understand 
which subgroups arise in which circumstances. In particular, if the equa­
tion can be solved by radicals, then the Galois group of the equation 
should reflect this fact in its internal structure. Then, given any equation, 
you just work out its Galois group and check whether it has the required 
structure, and you know whether it can be solved by radicals. 

" �'!"{ 
..

.•... 

Now Galois could recast the whole problem from a different viewpoint. 
Instead of building a tower with ladders and sacks, he grew a tree. 
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Not  that he  called i t  a tree, any more than Abel talked of Cardano 
Tower, but we can picture Galois 's idea as a process that repeatedly 
branches from a central trunk. The trunk is the Galois group of the equa­
tion. The branches, twigs, and leaves are various subgroups. 

Subgroups arise naturally as soon as we start thinking about how the 
symmetries of equations change when we start taking radicals. How does 
the group change? Galois showed that if we form a pth root, then the 
symmetry group must split into p distinct blocks, all the same size. (Here, 
as Abel noted, we can always assume p to be prime.) So, for example, a 
group of 1 5  permutations might split into five groups of 3, or three 
groups of 5. Crucially, the blocks have to satisfy some very precise condi­
tions; in particular, one of them must form a subgroup in its own right of 
a special kind known as a "normal subgroup of index p." We can think of 
the trunk of the tree splitting into p smaller branches, one of which corre­
sponds to the normal subgroup. 

The normal subgroups of the group of all six permutations of three 
symbols are the entire group [ 1, U, V, P, Q R ] ,  the subgroup [ L  U, V] ,  
whose table we saw just now, and the subgroup with just one permutation, 
[1] . The other three subgroups, which contain two permutations, are not 
normal. 

For instance, suppose we want to solve the general quintic. There are 
five roots, so the permutations involve five symbols. There are precisely 
1 20 such permutations. The coefficients of the equation, being fully sym­
metric, have a group that contains all 1 20 of these. This group is the trunk 
of the tree. Each root, being totally asymmetric, has a group that contains 
just one permutation-the trivial one. So the tree has 1 20 leaves. Our aim 
is to join the trunk to the leaves by branches and twigs whose structure re­
flects the symmetry properties of the various quantities that arise if we 
start working out the bits and pieces of a formula for the roots, which we 
assume are expressed by radicals. 

Suppose for the sake of argument that the first step in the formula is to 
adjoin a fifth root. Then the group of 1 20 permutations must split into 
five pieces, each containing 24 permutations. So the tree develops five 
branches. Technically, this branching must correspond to a normal sub­
group of index 5 .  

However, Galois could prove, merely by calculating with permutations, 
that there does not exist such a normal subgroup. 
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Very well, perhaps the solution starts with, say, a seventh root. Then the 
1 20 permutations must split into seven blocks of equal size-but they 
can't, because 1 20 is not divisible by 7. No seventh roots, then. In fact, no 
prime roots except 2, 3, and 5, because those are the prime factors of 1 20. 
And we've just ruled out 5 . 

A cube root to start with, then? Unfortunately not: the group of 1 20 
permutations has no normal subgroup of index 3 .  

All that's left is a square root. Does the group of 1 20 permutations 
have a normal subgroup of index 2? Indeed it does, precisely one. It con­
tains 60 permutations, and is called the alternating group. So by using 
Galois 's theory of groups, we have established that any formula for solv­
ing a general quintic must start with a square root, leading to the alternat­
ing group. The first place where the trunk splits leads to just two branches. 
But there are 1 20 leaves, so the branches must split again. How do the 
branches split? 

The prime divisors of 60 are also 2, 3, and 5. So each of our new 
branches must split into two, three, or five twigs. That is, we must either 
adjoin another square root, a cube root, or a fifth root. Moreover, this can 
be done if and only if the alternating group has a normal subgroup of in­
dex 2, 3, or 5. 

But does it have such a normal subgroup? That is a question purely 
about permutations of five symbols. By analyzing such permutations, 
Galois was able to prove that the alter­
nating group has no normal subgroups 
at all (except for the whole group and 
the trivial subgroup [I]) . It is a "sim­
ple" group-one of the basic compo­
nents out of which all groups can be 
constructed. 

There are too few normal subgroups 
to connect the trunk to the leaves by 
means of splitting into a prime number 
of branches at each successive step. So 
the process of solving the quintic by 
radicals grinds to an abrupt halt after 
that first step of adjoining a square 
root. There is nowhere else to go. No tree 

[JJ 

? ? ? 

Quintic 
Galo is 's proof that the qu intic is 

unsolvable .  
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Quadrabc Quartic 

Us ing groups to solve the quadratic, cu b ic, and quartic. 

can climb from the trunk all the way up to the leaves, and therefore there 
is no formula for the roots in terms of radicals. 

The same idea works for equations of degree 6, 7, 8, 9-anything larger 
than 5. This leaves us wondering why the quadratic, cubic, and quartic are 
solvable. Why are degrees 2, 3, and 4 exceptional? In fact, group theory 
tells us exactly how to solve the quadratic, cubic, and quartic. I'll leave out 
the technicalities, and just show you the trees. They correspond precisely 
to the classical formulas. 

Now we begin to see the beauty of Galois 's idea. Not only does it prove 
that the general quintic has no radical solutions, it also explains why the 
general quadratic, cubic, and quartic do have radical solutions and tells us 
roughly what they look like. With extra work, it tells us exactly what they 
look like. Finally, it distinguishes those quintics that can be solved from 
those that can't, and tells us how to solve the ones that can. 

The Galois group of an equation tells us everything we could possibly 
wish to know about its solutions. So why did Poisson, Cauchy, Lacroix, 
and all the other experts not leap with joy when they saw what Galois had 
done? 

The Galois group has a terrible secret. 
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The secret is this. The easiest way to work out the group of an equation is 
to use properties of its roots. But of course, the whole point is that we 
usually do not know what the roots are. Remember, we are trying to solve 
the equation, that is, to find its roots. 

Suppose someone presents us with a specific quintic, say 

x' - 6x +  3 = 0 

or 

x' + 1 5x + 1 2  = 0 

and asks us to use Galois 's methods to decide whether it can be solved by 
radicals. It seems a fair question. 

The dreadful truth is that with the methods available to Galois, there is 
no way to answer it. We can assert that most likely, the associated group 
contains all 1 20 permutations-and if it does, then the equation can't be 
solved. But we don't know for sure that all 1 20 permutations actually oc­
cur. Maybe the five roots obey some special constraint. How can we tell? 

Beautiful though it may be, Galois 's theory has severe limitations. It 
works not with the coefficients but with the roots. In other words, it 
works with the unknowns, not with the knowns. 

Today, you can go to a suitable mathematical website, input your equa­
tion, and it will calculate the Galois group. We now know that the first 
equation above is not solvable by radicals, but the second one is solvable. 
My point is not the computer, but that someone has discovered what steps 
should be taken to solve the problem. The great advance since Galois in 
this area was working out how to compute the Galois group of any given 
equation. 

Galois possessed no such technique. It would take another century be­
fore routine calculation of the Galois group became feasible. But the ab­
sence of this technique let Cauchy and Poisson off the hook. They could 
complain, with complete justification, that Galois's ideas did not solve the 
problem of deciding when a given equation could be solved by radicals. 

What they failed to appreciate was that his method did solve a slightly 
different problem: to work out which properties of the roots made an 
equation solvable. That problem had an elegant-and deep--answer. The 
problem they wanted him to solve . . .  well, there is no reason to expect a 
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neat answer. There just isn't a tidy way to classify the solvable equations in 
terms of easily computed properties of their coefficients. 

So far, the interpretation of groups as symmetries has been somewhat 
metaphorical. Now we need to make it more literal, and that step requires 
a more geometric point of view. Galois's successors quickly realized that 
the relation between groups and symmetry is much easier to understand in 
the context of geometry. In fact, this is how the subject is usually intro­
duced to students. 

To get a feeling for this relationship, we'll take a quick look at my fa­
vorite group: the symmetry group of an equilateral triangle. And we'll fi­
nally address a very basic question: What, exactly, is symmetry? 

Before Galois, all answers to this question were rather vague, handwavy 
things, with appeals to features like elegance of proportion. This is not a 
concept you can do sensible mathematics with. After Galois-and after a 
short period during which the world of mathematics sorted out the gen­
eral ideas behind his very specific application-there was a simple and un­
equivocal answer. First, the word "symmetry" has to be reinterpreted as 
"a symmetry." Objects do not possess symmetry alone; they often possess 
many different symmetries. 

What, then, is a symmetry? A symmetry of some mathematical object 
is a transformation that preserves the object's structure. I'll unpack this 
definition in a moment, but the first point to observe is that a symmetry is 
a process rather than a thing. Galois 's symmetries are permutations (of the 
roots of an equation) , and a permutation is a way to rearrange things. It is 
not, strictly speaking, the rearrangement itself; it is the rule you apply to 
get the rearrangement. Not the dish but the recipe. 

This distinction may sound like splitting hairs, but it is fundamental to 
the whole enterprise. 

There are three key words in the definition of a symmetry: "transfor­
mation," "structure," and "preserve." Let me explain them using the ex­
ample of an equilateral triangle. Such a triangle is defined as having all 
three sides the same length and all three angles the same size, namely 
60° . These features make it difficult to distinguish one side from an­
other; phrases like "the longest side" don't tell us anything. The angles 
are also indistinguishable. As we now see, the inability to distinguish one 
side from another or one angle from another is a consequence of the 
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symmetries of the equilateral triangle. In fact, it is what defines those 
symmetries. 

Let's consider those three words in turn. 
Transformation: We are allowed to do things to our triangle. In principle 

there are lots of things we might do: bend it, turn it through some angle, 
crumple it up, stretch it like elastic, paint it pink. Our choice here is more 
limited, however, by the second word. 

Structure: The structure of our triangle consists of the mathematical 
features that are considered significant. The structure of a triangle in­
cludes such things as "it has three sides," "the sides are straight," "one side 
has length 7.32 inches," "it sits in the plane at this location," and so on. (In 
other branches of mathematics, the significant features may be different. 
In topology, for instance, what matters is that the triangle forms a single 
closed path, but its three corners and the straightness of its edges are no 
longer important.) 

Preserve: The structure of the transformed object must match that of 
the original. The transformed triangle must also have three sides, so crum­
pling it is ruled out. The sides must remain straight, so bending it is not 
permitted. One side must still have length 7.32 inches, so stretching the 
triangle is forbidden. The location must be the same, so sliding it ten feet 
sideways is disallowed. 

The color is not explicitly mentioned as structure, so painting the trian­
gle pink is irrelevant. It's not exactly ruled out; it just makes no difference 
for geometric purposes. 

Turning the rriangle through some angle, however, does preserve at least 
some of the structure. If you make an equilateral triangle out of card­
board, set it on the table, and then rotate it, it still looks like a rriangle. It has 
three sides, they are still straight, their lengths haven't changed. But the lo­
cation of the triangle in the plane may still look different, depending on the 
angle through which you rotate it. 

If I turn the triangle through a 
right angle, for instance, the result 
looks different. The sides point in 
different directions. If you covered 
your eyes while I turned the trian­
gle, you would know when you 
opened them again that I had 
moved it. 

Rotation through a right ang le  is not a 

symmetry of the equi latera l  tr iang le .  
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Rotation through 1200 is a symmetry 
of the equilateral triangle. 

But if I turned the triangle 
through 120°, you wouldn't be able 
to see any difference between "be­
fore" and "after." To show you 
what I mean, I will secretly mark 
the corners with different types of 
dots, so we can see where it moves 
to. These dots are for reference 

only and are not part of the structure that is preserved. If you can't see the 
dots, if the triangle is as featureless as any well-behaved Euclidean object, 
then the turned triangle looks the same as the original. 

In other words, "rotate by 120°" is a symmetry of the equilateral trian­
gle. It is a transformation ("rotate") that preserves the structure (shape 
and location). 

It turns out that an equilateral triangle has precisely six different sym­
metries. Another is "rotate by 240°." Three more are reflections, which 
turn the triangle over so that one corner remains fixed and the other two 
exchange positions. What is the sixth symmetry? Do nothing. Leave the tri­
angle alone. This is trivial, but it fits the definition of symmetry. In fact, 
this transformation fits the definition of symmetry no matter what object 
we consider or what strucrure we want preserved. If you do nothing, then 
nothing changes. 

This trivial symmetry is called the identity. It may seem insignificant, 
but if we leave it out, the math gets very messy. It's like trying to do addi­
tion without the number zero or multiplication without the number one. 
If we keep the identity in, everything stays neat and tidy. 

The six symmetries of the equilateral triangle. 
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For the equilateral triangle, you can think of the identity as rotation 

through 0°. On the previous page are the results of applying the six sym­

metries to our equilateral triangle. They are precisely the six different ways 
that you can pick up a triangle made of cardboard and lay it down within 

its original outlines. The dotted lines show where to put the mirror to ob­

tain the required reflection. 
Now I want to convince you that symmetries are a part of algebra. So I 

will do what any algebraist would do: express everything in terms of sym­

bols. We will name the six symmetries I, U. v, P, Q R according to the pic­

ture above. The identity is I; the other two rotations are U and V; the three 

reflections are P, Q and R. These are the same symbols that I used earlier 
for permutations of the roots of a cubic. There is a reason for this dupli­

cation, which will shortly emerge. 
Galois made great play of the "group property" of his permutations. If 

you perform any two in turn, you get another one. This provides a big hint 

about what we should do with our six symmetries. We should "multiply" 
them in pairs and see what happens. Recall the convention: if X and Yare 

two symmetry transfor mations, then the product XY is what happens 

when we first do Y, then X 

Suppose, for instance, that we want to work out VU. This means that 

first we apply U to the triangle, then V. Well, U rotates it through 120°, 

and V then rotates the resulting triangle through 240°. So VU rotates it 

through 120° + 240° = 360°. 
Oops, we forgot to include that. 
No we didn't. If you rotate a triangle through 360°, everything ends up 

exactly where it started. And in group theory it is the end result that mat­

ters, not the route taken to get there. In the language of symmetries, two 

symmetries are considered to be the same if they have the same final ef­

fect on the object. Since VU has the same effect as the identity, we con­

clude that VU = J 

For a second example, what does UQ do? The transformations go like 

this: 

• 

U 

How to mUltiply symmetries. 
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We recognize the end result: i t  i s  P. SO  UQ = P. 
With our six symmetries we can form 36 products, and the calculations 

can be captured in a multiplication table. It is exactly the same table that 
we obtained for the six permutations of the roots of a cubic . 

.. �!
.
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This apparent coincidence turns out to be an example of one of the most 
powerful techniques in the whole of group theory. It originated in the 
work of the French mathematician Camille Jordan, who arguably turned 
group theory into a subject in its own right, rather than just a method for 
analyzing the solution of equations by radicals. 

Around 1 870, Jordan drew attention to what is now called "representa­
tion theory." To Galois, groups were composed of permutations-ways 
to shuffle symbols. Jordan started thinking about ways to shuffle more 
complicated spaces. Among the most basic spaces in mathematics are 
multidimensional spaces, and their most important feature is the existence 
of straight lines. The natural way to transform such spaces is to keep 
straight lines straight. No bending, no twisting. There are many transfor­
mations of this kind-rotations, reflections, changes of scale. They are 
called "linear" transformations. 

The English lawyer-mathematician Arthur Cayley discovered that any 
linear transformation can be associated with a matrix-a square table of 
numbers. Any linear transformation of three-dimensional space, for ex­
ample, can be specified by writing down a 3-by-3 table of real numbers. So 
transformations can be reduced to algebraic computations. 

Representation theory lets you start with a group that does not consist 
of linear transformations and replace it with one that does. The advantage 
of converting the group to a group of matrices is that matrix algebra is 
very deep and powerful, and Jordan was the first to see this. 

Let's look at the symmetries of the triangle from jordan's point of view. 
Instead of placing shaded dots in the corners of the triangle, I will place 
the symbols a, b, c, corresponding to the roots of the general cubic. It 
then becomes obvious that each symmetry of the triangle also permutes 
these symbols. For example, the rotation U sends abc to cab. 

The six symmetries of the triangle correspond naturally to the six per­
mutations of the roots a, b, c. Moreover, the product of two symmetries 
corresponds to the product of the corresponding permutations. But rota-
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How symmetries of the eq u i l atera l  tr iangle correspond to 

permutations. 

tions and reflections in the plane are linear transformations-they preserve 
straight lines. So we have reinterpreted the permutation group-repre­

sented it-as a group of linear transformations, or equivalently as a group 
of matrices. This idea was to have profound consequences for both mathe­
matics and physics. 
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H 0 longer was symmetry some vague impression of regularity or  an 
artistic feeling of elegance and beauty. It was a clear mathematical 
concept with a rigorous logical definition. You could calculate with 
symmetries and prove theorems about them. A new subject was 

born: group theory. Humanity's quest for symmetry had reached a turning 
point. The admission fee for this advance was a willingness to think more 
conceptually. The concept of a group was an abstract one, several stages 
removed from the traditional raw materials of numbers and geometrical 
shapes. 

Groups had already proved their worth by resolving an age-old conun­
drum, the solvability of the quintic. It soon became clear that the same 
circle of ideas disposed of several other age-old problems. You didn't al­
ways need group theory as such, but you needed to think like Abel, Galois, 
and their successors. And even when you thought you weren't using 
groups, they often lurked in the background. 

Among the unsolved problems the Greek geometers bequeathed to pos­
terity, three had become notorious: the problems of trisecting the angle, 
duplicating the cube, and squaring the circle. Even today, trisection and 
circle-squaring attract the attention of numerous amateurs, who seem not 
to have grasped that when mathematicians use the word "impossible," 
they mean it. Duplicating the cube seems not to have the same allure. 

1 2 5  
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These three are often referred to a s  the "three problems of  antiquity," 
but this phrase exaggerates their importance. It makes them appear to be 
on a par with major historical puzzles such as Fermat's Last Theorem, 
which went unanswered for more than 350 years. But this puzzle was ex­
plicitly recognized as an unsolved problem, and it is possible to identify 
the precise point in the mathematical literature where it was first posed. 
All mathematicians were aware not just of the problem but the presumed 
answer-and who had first asked the question. 

The Greek problems are not like that. You won't find them listed in Eu­
clid as unsolved problems that need attention. They exist mainly by de­
fault: they are obvious extensions of positive results, but for some reason 
Euclid avoided them. Why? Because no one knew how to solve them. Did 
it occur to the Greeks that they might not have solutions? If so, no one 
made much fuss. It undoubtedly occurred to people like Archimedes that 
no straightedge-and-compass solutions existed, because he developed al­
ternative techniques, but there is no evidence that Archimedes considered 
the issue of constructibility important in its own right. 

Later it became important. The lack of solutions to these problems 
pointed to major gaps in humanity's understanding of geometry and alge­
bra; they gained currency as "folklore" problems, known to the profes­
sionals through a kind of cultural osmosis. By the time they were solved, 
they had taken on an aura of historical and mathematical significance. 
Their solutions were seen as major breakthroughs-especially squaring 
the circle. And in all three cases, the answer was the same: "It can't be 
done." Not with the traditional tools of straightedge and compass. 

This may seem rather negative. In most walks of life, people seek to an­
swer questions or overcome difficulties by whatever means comes to 
hand. If a tall building cannot be constructed from bricks and mortar, en­
gineers use steel frames and reinforced concrete. No one gains fame by 
proving that bricks are not up to the job. 

Mathematics is not quite like that. The limitations of the tools are often 
just as important as what they can accomplish. The importance of a math­
ematical question often depends not on the answer as such, but on why 
the answer is correct. So it was for the three problems of antiquity. 

�:!-� ....•.... 

The scourge of trisectors everywhere was born in Paris in 1 81 4, and his 
name was Pierre Laurent Wantzel. His father was first an army officer and 
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later professor of applied mathematics at the Ecole Speciale du Com­
merce. Pierre was precocious; Adhemard Jean Claude Barre de Saint­
Venant, who knew Wantzel, wrote that the boy showed "a marvelous 
aptitude for mathematics, a subject about which he read with extreme in­
terest. He soon surpassed even his master, who sent for the young 
Wantzel, at age nine, when he encountered a difficult surveying problem." 

In 1 828, Pierre successfully applied to enter the College Charlemagne. 
He won first prize in both French and Latin in 1 83 1 ,  and he came in first 
in both the entrance examination for the Ecole Poly technique and that for 
the science section of what is now the Ecole Normale, which no one had 
ever done before. He was interested in just about everything-mathemat­
ics, music, philosophy, history-and he liked nothing better than a good, 
hard-fought debate. 

In 1 834, he turned his mind to engineering, attending the Ecole des 
Ponts et Chaussees. But soon he was confessing to his friends that he 
would be "but a mediocre engineer," decided that he really wanted to 
teach mathematics, and took a leave of absence. The switch worked: he 
became a lecturer in analysis at the Ecole Poly technique in 1 838, and by 
1 841 he was also a professor of applied mechanics at his old engineering 
school. Saint-Venant tells us that Pierre "usually worked during the 
evening, not going to bed until late in the night, then reading, and got but 
a few hours of agitated sleep, alternatively abusing coffee and opium, tak­
ing his meals, until his marriage, at odd and irregular hours." The marriage 
was to his former Latin coach's daughter. 

Wantzel studied the works of Ruffini, Abel, Galois, and Gauss, devel­
oping a strong interest in the theory of equations. In 1 837 his paper "On 
the means of ascertaining whether a geometric problem can be solved 
with straightedge and compass" appeared in Liouville's Journal de Mathe­
matiques Pures et Appliquees. It took up the story of constructibility where 
Gauss had left off. He died in 1 848 at the age of 33-probably as a result 
of overwork from an excess of teaching and administrative duties. 

";;.,!.�' 
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On the questions of trisection and duplicating the cube, Wantzel's impos­
sibility proofs resemble Gauss's epic work on regular polygons, but are 
much easier. I'll start with the duplication of the cube, where the issues are 
very transparent. Does there exist a straightedge-and-compass construc­
tion for a line of length � ? 
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Gauss's analysis of  regular polygons i s  based on  the idea that any geo­
metric construction boils down to solving a series of quadratic equations. 
He pretty much takes this for granted, because it follows algebraically 
from properties of lines and circles. Some reasonably easy algebra implies 
that the "minimum polynomial" of any constructible quantity-the sim­
plest equation that it satisfies-has degree equal to a power of two. That 
equation may be linear, quadratic, quartic, octic (degree 8) , of degree 1 6, 
32, 64, . . .  but whatever the degree is, it is a power of two. 

On the other hand, V2 satisfies the cubic equation x' - 2 = 0, and this is 
its minimum polynomial. The degree is 3, which is not a power of 2. 
Therefore the assumption that the cube can be duplicated using straight­
edge and compass leads, by impeccable logic, to the conclusion that 3 is a 
power of 2. This is obviously not true. By reductio ad absurdum, therefore, 
no such construction can exist. 

Trisection of the angle is impossible for a similar reason, but the proof is 
slightly more involved. 

First, some angles can be trisected exactly. A good example is 1 80°, 
which trisects to 60° , an angle that we can construct by making a regular 
hexagon. So the impossibility proof begins by picking some other angle 
and proving that this choice cannot be trisected. The simplest angle to 
pick is 60° itself. One-third of that is 20°, and we will show that 20° can­
not be constructed using straightedge and compass. 

This is a sobering thought. Look at a protractor, an instrument for 
measuring angles. Confidently marked on it are angles of 1 0°, 20°, and so 
on. But those angles are not exact-for a start, the inked lines have thick­
ness. We can make an angle of 20° that's good enough for an architectural 
or engineering drawing. But we can't construct a perfect 20° angle using 
Euclidean methods-that's what we plan to prove. 

The key to this puzzle is trigonometry, the quantitative study of angles. 
Suppose that we start with a hexagon inscribed in a circle of radius 1 .  
Then we can find a 60° angle, and if we could trisect it, we could construct 
the bold line in the figure (next page) . 

Suppose this line has length x. Trigonometry informs us that x satisfies 
the equation 8x' - 6x - 1 = O. As in the problem of duplicating the cube, 
this is cubic, and again it is the minimum polynomial of x. But if x is con­
structible then the degree of its minimum polynomial must be a power of 
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Trisect ing an ang le  of 60° i s  

equ iva lent to construct ing the 

length marked x. 

2. Same contradiction, same conclusion: the proposed construction is im­
possible. 

The way I have presented these proofs conceals a deeper structure, and 
from a more abstract perspective Wantzel's solutions of these two prob­
lems of antiquity both boil down to symmetry arguments :  the Galois 
groups of the equations that correspond to the geometry have the wrong 
structure for straightedge-and-compass constructions. Wantzel was well 
aware of Galois groups, and in 1 845 he developed a new proof that some 
algebraic equations cannot be solved by radicals. The proof followed 
Ruffini and Abel closely, but simplified and clarified the ideas. In the intro­
duction Wantzel states, 

Although [Abel's] proof is finally correct, it is presented in a form 
too complicated and so vague that it is not generally accepted. Many 
years previous, Ruffini . . .  had treated the same question in a manner 
much vaguer still . . .  In meditating on the researches of these two 
mathematicians . . .  we have arrived at a form of proof which ap-
pears so strict as to remove all doubt on this important part of the 
theory of equations. 
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The sole remaining problem of antiquity was squaring the circle, a task 
that amounts to constructing a line of length exactly equal to 31:. Proving 
this construction impossible turned out to be much more difficult. Why? 
Because instead of 31: having a minimum polynomial of the wrong degree, 
it turned out to have no minimum polynomial at all. There is no polyno­
mial equation with rational coefficients having a root equal to 31:. You can 
come as close as you like, but you can never get exactly 31:. 
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The mathematicians of  the nineteenth century realized that the distinc­
tion between rational and irrational numbers could profitably be refined. 
There were different kinds of irrational. Relatively "tame" irrationals like 
,j2 could not be represented as exact fractions, that is, as rational numbers, 
but they could be represented in terms of rational numbers. They satisfied 
equations whose coefficients were rational numbers-in this case, x2_ 2 = 
O. Such numbers were said to be "algebraic." 

But mathematicians realized that in principle there might exist irrational 
numbers that were not algebraic and whose link to the rationals was far 
more indirect than that for the algebraic numbers. They transcended the ra­
tional realm altogether. 

The first question was, do such "transcendental" numbers actually ex­
ist? The Greeks supposed that all numbers might be rational until Hippa­
sus disillusioned them, and Pythagoras allegedly was so incensed that he 
drowned the messenger. (More likely, Hippasus was just expelled from the 
Pythagorean cult.) The mathematicians of the nineteenth century were 
aware that any belief that all numbers are algebraic was equally likely to 
lead to tragedy, but for many years they lacked a Hippasus. All they had to 
do was to prove that some specific real number-3t was a plausible candi­
date-is not algebraic. But it's difficult enough to prove that some num­
ber, 3t, for example, is irrational, and for that all you have to show is the 
nonexistence of any pair of integers such that one divided by the other 
gives you 3t. To prove that a number is not algebraic, you have to replace 
these hypothetical integers by all possible equations, of any degree what­
soever, and then derive a contradiction. It gets messy. 

The first significant progress was made by the German mathemati­
cian and astronomer Johann Lambert in 1 768. In a paper on transcen­
dental numbers, he proved that 3t is irrational, and his method paved the 
way to everything that followed. It made essential use of ideas from cal­
culus, notably the concept of an "integral." (The integral of any given 
function is a function whose rate of change yields the original function.) 
Starting from the assumption that 3t is equal to some exact fraction, 
Lambert proposed to calculate a fairly complicated integral that he had 
invented for just this purpose, which involved not just polynomials but 
trigonometric functions. There are two distinct ways to calculate this in­
tegral. One of them gives the answer zero. The other proves that the an­
swer is not zero. 
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If 3t were not a fraction, then neither method would apply, so no prob­
lems would arise. But if 3t were a fraction, zero would have to be different 
from itself. No way. 

The details of Lambert's proof are technical, but how it works is very 
informative. To get started, he had to relate 3t to something simpler, and 
trigonometry came to his rescue. The next problem was to fix things up so 
that something special would happen if 3t were rational. This was where 
the polynomial bit came in, along with the clever idea of forming an inte­
gral. After that, the proof was a matter of comparing two distinct meth­
ods for computing the integral, and showing that they gave different 
answers. That bit was messy and technical, but routine for experts. 

Lambert's proof was a major step forward, but plenty of irrational 
numbers can be constructed, the most obvious being fl., the diagonal of a 
unit square. So proving 3t irrational did not prove that it was uncon­
structible. It meant there was no longer any point in trying to find an exact 
fraction for 3t, but that was a different issue altogether . 
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At this point, mathematicians faced an unusual dilemma. They had made a 
distinction between algebraic numbers and transcendental ones, and they 
believed it would be important. But they still did not know whether any 
transcendental numbers existed. In practical terms, the supposed distinc­
tion might be meaningless. 

It took until 1 844 to prove the existence of transcendentals. The break­
through was made by Liouville, who had previously salvaged Galois 's 
work from the academic rubbish heap. Now Liouville managed to invent a 
transcendental number. It looked like this: 

0 . 1 1 0001 000000000000000001 000 . . .  , 

where longer and longer sequences of O's are separated by isolated 1 's. 
The important point is that the lengths of the blocks of zeros have to in­
crease very rapidly. 

N umbers of this kind are "almost" rational. There exist unusually 
good rational approximations-basically thanks to those blocks of zeros. 
The long block above, for instance, with 1 7  consecutive zeros, implies 
that what comes before it-O. 1 1 0001-is a much better approximation 
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to Liouville's number than you might expect of  a random decimal frac­
tion. And 0 . 1 1 000 1 ,  like any finite decimal, is rational: it is equal to 

1 1 0001 I d f b . . d . I I . . 23 1 000000 . nstea 0 elng accurate to SIX eClma p aces, It IS accurate to 
decimal places. The next nonzero digit is a 1 in the 24th place. 

Liouville had realized that algebraic numbers, other than rational 
ones, are always rather badly approximated by rationals. Not only are 
such numbers irrational; to get a good rational approximation you have 
to use very big numbers in any fraction that gets close. So Liouville de­
liberately defined his number to have extraordinarily good rational ap­
proximations, much too good for it to be algebraic. Therefore it had to 
be transcendental. 

The only criticism we can direct against this clever idea is that Liou­
ville's number is very artificial. It has no evident connection with anything 
else in mathematics. It is plucked from thin air for the sole reason that it 
can be very well approximated by rationals. No one would care about it at 
all save for that one remarkable feature: it is provably transcendental. So 
now mathematicians knew that transcendentals did exist. 

Whether interesting transcendentals existed was another matter, but at 
least the theory of transcendental numbers had some content. Now the 
task was to provide interesting content. Above all, is 3t transcendental? If 
it were, that would knock the old squaring-the-circle problem on the head. 
All constructible numbers are algebraic, so no transcendental is con­
structible. If 3t is transcendental, it is impossible to square the circle. 

:;;!.� 
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The number 3t is justly famous because of its connections with circles and 
spheres. Still, mathematics contains other remarkable numbers, and the 
most important-probably even more important than 3t-is known as e. 
Its numerical value is approximately 2 .71 828, and like 3t it is irrational. 
This number arose in 1 6 1 8, in the early days of logarithms; it determines 
the correct interest rate if compound interest is applied over ever-shorter 
intervals. It was called b in a letter Leibniz wrote to Huygens in 1 690. The 
symbol e was introduced by Euler in 1 727, and it appeared in print in his 
Mechanics of 1 736. 

By using complex numbers, Euler discovered a remarkable relation be­
tween e and 3t, often considered the most beautiful formula in mathemat­
ics. He proved that e'" = -1 . (This formula does have an intuitive 
explanation, but it involves differential equations.) After Liouville's dis-
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covery, the next step to the proof that :n: is transcendental took a further 
29 years, and it applied to the number e. In 1 873 the French mathemati­
cian Charles Hermite proved that e is transcendental. Hermite's career has 
remarkable parallels with that of Galois-he went to Louis-Ie-Grand, was 
taught by Richard, tried to prove that the quintic is unsolvable, and wanted 
to study at the Ecole Poly technique. But unlike Galois he got in-by the 
skin of his teeth. 

One of Hermite's students, the famous mathematician Henri Poincare, 
observed that Hermite's mind worked in strange ways: "To call Hermite a 
logician! Nothing can appear to me more contrary to the truth. Methods 
always seemed to be born in his mind in some mysterious way." This orig­
inality served Hermite well in his proof that e is transcendental. The proof 
was an elaborate generalization of Lambert's proof that :n: is irrational. It 
also employed calculus; it evaluated an integral in two ways; and if e were 
algebraic, those two answers would be different: one equal to zero, one 
nonzero. The difficult step was to find the right integral to compute. 

The actual proof occupies about two printed pages. But what a won­
derful two pages! You could search for a lifetime and not discover the 
right choice of integral. 

The number e is at least a "natural" object of mathematical study. It 
crops up all over mathematics and is absolutely vital to complex analysis 
and the theory of differential equations. Although Hermite had not 
cracked the problem of :n:, he had at least improved on Liouville's rather 
artificial example. Now mathematicians knew that the everyday operations 
of mathematics could throw up entirely reasonable numbers that turned 
out to be transcendental. Soon a successor would use Hermite's ideas to 
prove that one of those numbers was :n:. 

··�·l·�·· 
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Carl Louis Ferdinand von Lindemann was born in 1 852, the son of a lan­
guage teacher, Ferdinand Lindemann, and the headmaster's daughter, Em­
ilie Crus ius. Ferdinand changed jobs, becoming the director of a 
gasworks. 

Like many students in late-nineteenth-century Germany, Lindemann Jr. 
moved from one university to another-Gottingen, Erlangen, Munich. At 
Erlangen he took a PhD on non-Euclidean geometry under the supervi­
sion of Felix Klein. He traveled abroad, to Oxford and Cambridge, and 
then to Paris, where he met Hermite. On obtaining his habilitation in 
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1 879, he  obtained a professorship a t  the University of Freiburg. Four 
years later he moved to the University of Konigsberg, where he met and 
married Elizabeth Kiissner, a teacher's daughter who worked as an actress. 
Ten years after that, he became a full professor at the University of Mu­
nich. 

In 1 882, halfway between his trip to Paris and his appointment to 
Konigsberg, Lindemann figured out how to extend Hermite's method to 
prove the transcendence of 3t, and became famous. Some historians be­
lieve that Lindemann j ust got lucky-that he was a bit of a hack who 
blundered across the right extension of Hermite's magnificent idea. But as 
the golfer Gary Player once remarked, "The better I play, the luckier I 
get." So, most likely, was it with Lindemann. If anyone could get lucky, 
why didn't Hermite? 

Later, Lindemann turned to mathematical physics, investigating the 
electron. His most famous research student was David Hilbert. 

Lindemann's proof of the transcendence of 3t used the method pio­
neered by Lambert and developed by Hermite: write down a suitable inte­
gral, calculate it two ways, and show that if 3t is algebraic the answers 
disagree. The integral was very closely related to the one used by Hermite, 
but even more complicated. The connection between e and 3t, in fact, was 
the beautiful relationship discovered by Euler. If 3t were algebraic, then e 
would have to have some new and surprising properties-analogous to, 
but differing from, being algebraic. The core of Lindemann's proof is 
about e, not about 3t. 

With Lindemann's proof, this chapter of  mathematics reached its first 
truly significant conclusion. That it was impossible to square the circle was 
barely a sideshow. Much more important was that mathematicians knew 
why. Now they could go on to develop the theory of transcendental num­
bers, which today is an active-and fiendishly difficult-area of research. 
Even the most obvious and plausible conjectures about transcendental 
numbers remain mostly unanswered. 

Armed with the insights of Abel and Galois, we can revisit the problem of 
constructing regular polygons. For which numbers n is the regular n-gon 
constructible with straightedge and compass? The answer is extraordinary. 

In the Disquisitiones Arithmeticae, Gauss stated necessary and sufficient 
conditions on the integer n, but he proved only their sufficiency. He 
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claimed to possess a proof that these same conditions are also necessary, 
but-like much of his work-he never published it. Gauss had actually 
done the hard part, and it was Wantzel who filled in the missing details in 
his 1 837 paper. 

To motivate Gauss 's answer, we briefly review the regular 1 7  -gon. What 
is it about the number 1 7  that makes the regular 1 7  -sided polygon con­
structible? Why is this not the case for numbers like 1 1  or 1 3? 

Notice that all three numbers here are primes. It is easy to show that if 
a regular n-gon is constructible, then so is the regular p-gon for every 
prime p dividing n. Just take every njpth corner. For example, taking every 
third vertex of a regular 1 5-gon yields a regular 5-gon. So it makes sense 
to think about prime numbers of sides, and to use the results for the 
primes to work your way toward a complete solution. 

The number 1 7  is prime, so that's a good start. Gauss's analysis, refor­
mulated in more modern terms, is based on the fact that the solutions of  
the equation Xl 7  - 1 = 0 form the vertices of a regular 1 7  -gon in  the com­
plex plane. There is one obvious root, x = 1 .  The other 1 6  are the roots of 
a polynomial of degree 1 6, which can be shown to be XI6  + XI S  + Xl4  + . . .  
x 2 + X + 1 = O. The 1 7  -gon is constructed by solving a series of quadratic 
equations, and it turns out that this is possible because 1 6  is a power of 2. 
It equals 24. 

More generally, the same line of argument proves that when p is an odd 
prime, the regular p-gon is constructible if and only ifp - 1 is a power of 2. 
Such odd primes are called Fermat primes because Fermat was the first to 
investigate them. The Greeks knew of constructions for the regular 3-gon 
and the regular 5-gon. Observe that 3 -1 = 2, and 5 - 1 = 4, both powers 
of 2. So the Greek results are consistent with Gauss's criterion, and 3 and 
5 are the first two Fermat primes. On the other hand, 7 - 1 = 6, not a 
power of two, so the regular 7 -gon is not constructible. 

A bit of extra work leads to Gauss's characterization: the regular n-gon 
is constructible if and only if n is a power of two, or a power of two mul­
tiplied by distinct Fermat primes. 

This leaves the question, what are the Fermat primes? The next one af­
ter 3 and 5 is Gauss 's discovery, 1 7 . The next is 257, followed by the 
rather large number 65,537. These are the only known Fermat primes. It 
has never been proved that no further Fermat primes exist-but it has 
also never been proved that they don't. For all we know, there might be 
some absolutely gigantic Fermat prime not yet known to humanity. At 
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the current state of knowledge this number i s  a t  least 233554432 + 1 ,  and in­
deed that might be the next Fermat prime. (The exponent 33554432 is it­
self a power of 2, namely 225. All Fermat primes are one greater than two 
raised to the power of a power of two.) This number has more than ten 
million digits. Even after Gauss's great discoveries, we still do not know 
for sure exactly which regular polygons are constructible, but the only 
gap in our knowledge is the possible existence of very large Fermat 
primes. 

Although Gauss proved that the 1 7  -gon is constructible, he did not ac­
tually describe the construction as such, though he did remark that the 
main point is to construct a line of length 

1�[- 1  +.J17 + ..}34 - 2.J17 + �68 + 12.J17 - 16..}34 + 2.J17 - 2(1 - .J17)(..}34 - 2.J17) ] 
The formu la  that determ ines Gauss 's construct ion of the regu la r  1 7  -gon. 

Since square roots are always constructible, the required construction is 
implicit in this remarkable number. The first explicit construction was de­
vised by Ulrich von Huguenin in 1 803. H. W. Richmond found a simpler 
version in 1 893. 

In 1 832, F. J. Richelot published a series of papers constructing the reg­
ular 257 -gon, under the title "De resolutione algebraic a aequationis 
X257 = 1 ,  sive de divisione circuli per bisectionem anguli septies repetitam in 
partes 257 inter se aequales commentatio coronata," which is even more 
impressive than the number of sides of his polygon. 

There is an apocryphal tale that an overzealous PhD student was as­
signed the construction of the 65537-gon as a thesis project, and reap­
peared with it twenty years later. The truth is almost as bizarre: J. Hermes, 
of the University of Lingen, devoted ten years to the task, finishing in 
1 894, and his unpublished work is preserved at the University of Gottin­
gen. Unfortunately, John Horton Conway, perhaps the only mathemati­
cian to have looked at these documents in modern times, doubts that the 
work is correct. 



g 

THf OHUH KfH URH ORl 

W illiam Rowan Hamilton was the greatest mathematician Ireland has 
ever produced. He was born at the stroke of midnight between 3 
and 4 August 1 805, and never quite made up his mind which of 
those dates was his birthday. Mostly he settled for the 3m, but his 

tombstone bears the date 4 August, because he switched to that date in 
later life for sentimental reasons. He was a brilliant linguist, a mathematical 
genius, and an alcoholic. He set out to invent an algebra of three dimen­
sions but realized, in a flash of intuition that caused him to vandalize a 
bridge, that he would have to settle for four dimensions instead. He for­
ever changed the human view of algebra, space, and time. 

William was born into a wealthy family, the third son of Archibald 
Hamilton, a lawyer with a sound head for business. William also had a sis­
ter, Eliza. His father was partial to the odd glass or three, which made him 
good company for a while but a growing embarrassment as the evening 
wore on. Archibald was articulate, intelligent, and religious, and he passed 
on all of his significant traits, alcohol and all, to his youngest son. 
William's mother, Sarah Hutton, was even more intelligent than her hus­
band, and came from a family of intellectual distinction, but her influence 
on young William, other than through her genes, was cut short when the 
father packed the boy off to be tutored by his uncle James at the age of 
three. James was a curate and an accomplished linguist, and his interests 
determined the main direction of William's education. 

The results were impressive but obsessively narrow. By the age of five, 
William was fluent in Greek, Latin, and Hebrew. By eight he could speak 
French and Italian. Two years later he had added Arabic and Sanskrit; then 
Persian, Syrian, Hindu, Malay, Mahratti, and Bengali . Attempts to teach 

1 3 7 
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the lad Chinese were stymied by a lack of  suitable texts. James complained 
that "it cost me a large sum to supply him from London, but I hope the 
money was well expended." 

The mathematician and quasi-historian Eric Temple Bell ("quasi" be­
cause he never let an awkward fact get in the way of a good story) asked, 
"What was it all for?" 

Fortunately for science and mathematics, William was saved from a life 
of mastering ever more of the world's thousands of languages when he 
came into contact with the American calculating prodigy Zerah Colburn. 
Colburn was one of those strange people who resemble a human pocket 
calculator; he had a talent for rapid, accurate computation. If you asked 
Colburn for the cube root of 1 ,860,867, he would reply "1 23" without 
pausing for breath. 

This talent is distinct from mathematical ability, just as a facility for 
spelling does not make a good novelist. Except for Gauss, who left nu­
merous big calculations in his notebooks and manuscripts, very few of the 
great mathematicians were lightning calculators. The rest were competent 
calculators-in those days you had to be-but no better than a qualified 
accountant. Even today, computers have not completely rendered pencil­
and-paper calculations, or mental ones, obsolete; you can often gain in­
sight into a mathematical problem by doing the calculations by hand and 
watching the symbols shuffle themselves around. But given the right soft­
ware, much of it written by mathematicians, anyone with an hour's train­
ing can knock the socks off the likes of Colburn. 

None of this will make you remotely resemble Gauss. 
Colburn did not fully understand the tricks and short cuts he employed, 

though he was aware that memory played a big part. He was introduced to 
Hamilton in the expectation that the youthful genius would be able to 
shed light on these mysterious techniques. William did that and even came 
up with improvements. By the time Colburn departed, Hamilton had fi­
nally found a topic worthy of his astonishing brainpower. 

By the age of seventeen, Hamilton had read many of the works of the 
mathematical masters, and knew enough mathematical astronomy to cal­
culate eclipses. He still spent more time on the classics than on mathemat­
ics, but the latter had become his true passion. Soon he was making new 
discoveries. Just as the 1 9-year-old Gauss discovered the construction of a 
regular 1 7-gon, so the young Hamilton made an equally unprecedented 
breakthrough, an analogy-mathematically, an identity-between me-
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chanics and optics, the science of light. He first alluded to these ideas in a 
cryptic letter to his sister Eliza, but we can be fairly certain of their nature 
from a subsequent letter to his cousin Arthur. 

The discovery was amazing. Mechanics is the study of moving bod­
ies--cannonballs traveling in a parabolic are, pendulums swinging regu­
larly from side to side, and planets moving in ellipses round the Sun. 
Optics is about the geometry of light rays, reflection and refraction, rain­
bows and prisms and telescope lenses. That they were connected was a 
surprise; that they were the same was unbelievable. 

It was also true. And it led directly to the formal setting used today by 
mathematicians and mathematical physicists, not just  in mechanics and 
optics but in quantum theory too: Hamiltonian systems. Their main fea­
ture is that they derive the equations of motion of a mechanical system 
from a single quantity, the total energy, now called the Hamiltonian of the 
system. The resulting equations involve not just the positions of the parts 
of the system but how fast they are moving-the momentum of the sys­
tem. Finally, the equations have the beautiful feature that they do not de­
pend on the choice of coordinates. Beauty is truth, at least in 
mathematics. And here the physics is both beautiful and true. 

�!.::' 
...
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Hamilton was luckier than either Abel or Galois in that his unusual talents 
were widely recognized from early childhood. So it was no surprise when, 
in 1 823, he gained admission to Ireland's leading university, Trinity College 
Dublin. Nor was it a surprise to find him at the head of a field of one 
hundred candidates. At Trinity, he took all the prizes. More importantly, he 
finished the first volume of his masterpiece on optics. 

In the spring of 1 825, Hamilton discovered the attractions of the fairer 
sex, in the form of one Catherine Disney. Unwisely, he confined his atten­
tions to writing poems, and his would-be love promptly married a wealthy 
clergyman, fifteen years her senior, who had a less literary approach to fair 
damsels. Hamilton was devastated; despite being staunchly religious, he 
thought about drowning himself, a mortal sin. Second thoughts prevailed, 
and he consoled himself by pouring out his frustrations in yet another 
poem. 

Hamilton loved poetry, and his circle of friends included leading mem­
bers of the literati. William Wordsworth became a close friend; he also 
spent time with Samuel Taylor Coleridge and various other writers and 
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poets. Wordsworth performed the valuable service of  gently pointing out 
to Hamilton that his talents did not lie in poetry: "You send me showers 
of verses which I receive with much pleasure . . .  yet have we fears that this 
employment may seduce you from the path of science . . .  I do venture to 
submit to your consideration, whether the poetical parts of your nature 
would not find a field more favorable to their nature in the regions of 
prose . . .  " 

Hamilton responded that his true poetry was his mathematics, and 
wisely turned to science. In 1 827, while still an undergraduate, he was 
unanimously elected Professor of Astronomy at Trinity after the incum­
bent, John Brinkley, resigned to become Bishop of Cloyne. Hamilton 
started with a bang by publishing his book on optics-an entirely valid 
topic for an astronomer since it underlay the design of most astronomical 
instruments. 

The link to mechanics was present only in embryonic form. The book's 
main focus, so to speak, was on the geometry of light rays-how they 
change direction when reflected in a mirror or refracted in a lens. "Ray op­
tics" later gave way to "wave optics," which recognized that light is a wave. 
Waves possess all sorts of extra properties, notably diffraction. Interfer­
ence among waves can soften the edges of a projected image and even 
make light seem to bend around corners, a trick forbidden to rays. 

The geometry of light rays was not a new topic; it had been studied ex­
tensively by earlier mathematicians, right back to Fermat, indeed, back to 
the Greek philosopher Aristotle. Now Hamilton did for optics what Le­
gendre had famously done for mechanics: he got rid of the geometry and 
replaced it by algebra and analysis. Specifically, he replaced overt geometri­
cal reasoning, based on diagrams, with symbolic calculations. 

This was a major advance, because it replaced imprecise pictures with 
rigorous analysis. Later mathematicians made strenuous efforts to reverse 
Hamilton's path and reintroduce visual thinking. But by then, the formal 
algebraic stance had become part and parcel of mathematical thought, a 
natural companion to more overtly visual arguments. The wheel of fash­
ion had come full circle but on a higher level, like a spiral staircase. 

Hamilton's great contribution to optics was unification. He took a huge 
variety of known results and reduced them all to the same fundamental 
technique. In place of a system of light rays he introduced a single quan­
tity, the "characteristic function" of the system. Any optical configuration 
was thereby represented by a single equation. Furthermore, this equation 



T H E  D R U N K E N  VA N D A L  1 4 1  

could be solved by a uniform method, leading to a complete depiction of 
the system of rays and its behavior. The method rested on a single funda­
mental principle: that light rays traveling through any system of mirrors, 
prisms, and lenses will follow the path that gets the light to its destination 
in the shortest time. 

. 
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Fermat had already found some special cases of this principle, calling it the 
Principle of Least Time. The easiest example to explain it is light reflecting 
from a flat mirror. The left-hand figure below shows a light ray emerging 
from one point and bouncing off the mirror to reach a second point. One of 
the great early discoveries in optics was the law of reflection, which states 
that the two segments of the light ray make equal angles with the mirror. 

Fermat came up with a neat trick: reflect the second segment of the ray, 
and the second point, in the mirror, as in the right-hand figure. Thanks to 
Euclid, the "equal angles" condition is the same as the statement that in 
this reflected representation, the path from the first point to the second is 
straight. But Euclid famously proved that a straight line is the shortest 
path between two points. Since the speed of light in air is constant, short­
est distance equates to shortest time. "Unreflecting" the geometry to get 
back to the left-hand figure, the same statement holds. So the equal-angles 
condition is logically equivalent to the light ray taking the shortest time to 
get from the first point to the second, subject to its hitting the mirror 
along the way. 

A related principle, Snell's law of refraction, tells us how light rays bend 
when passing from air into water, or from any medium to any other. It can 
be derived by a similar method, bearing in mind that light travels more 
slowly in water than it does in air. Hamilton went further, declaring that 
the same principle of minimizing time applied to all optical systems, and 

How the pr inc ip le of least t ime leads to the 

law of reflect ion .  
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capturing that thought in  a single mathematical object, the characteristic 
function. 

The mathematics was impressive, but in Hamilton's hands it led to im­
mediate experimental payoff Hamilton noticed that his method implied 
the existence of "conical refraction," in which a single light ray hitting a 
suitable crystal would emerge as an entire cone of rays. In 1 832 this pre­
diction, which was a big surprise to everyone who worked in optics, was 
dramatically confirmed by Humphry Lloyd using a crystal of the mineral 
aragonite. Overnight, Hamilton became a household name in science. 

By 1 830, Hamilton was thinking about settling down and considered 
marrying Ellen de Vere, telling Wordsworth he "admired her mind." 
Again he resorted to sending her poems, and was just getting ready to pro­
pose when she told him she could never leave her home village of Cur­
ragh. He interpreted this as a tactful brush-off, and he may have been 
right, because a year later she married someone else and moved away. 

Eventually, he married Helen Bayly, a local lass who lived near the ob­
servatory. Hamilton described her as "not at all brilliant." The honeymoon 
was a disaster; Hamilton worked on optics and Helen was ill. In 1 834 they 
had a son, William Edwin. Then Helen went away for most of a year. A 
second son, Archibald Henry, followed in 1 835, but the marriage was 
falling apart. 

�.!" 
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Posterity holds Hamilton's mechanico-optical analogy to have been his 
greatest discovery. But in his own mind, right up to his death and with in­
creasing obsession, that honor was reserved for something very different: 
quaternions. 

Quaternions are an algebraic structure, a close relative of complex 
numbers. Hamilton was convinced they held the key to the deepest re­
gions of physics; indeed, in his final years he believed they held the key to 
virtually everything. History seemed to disagree, and over the next century 
quaternions slowly faded from public view, becoming an obscure backwa­
ter of abstract algebra with few important applications. 

Very recently, however, quaternions have enjoyed a revival. While they 
may never measure up to Hamilton's hopes, they are increasingly recog­
nized as an important source of significant mathematical s tructures. 
Quaternions, it turns out, are very special beasts, and they are special in 
just the way modern theories of physics require. 
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When first discovered, quaternions started a major revolution in alge­
bra. They broke one of the important algebraic rules. Within twenty years, 
virtually all of the rules of algebra were routinely being broken, often 
bringing huge benefits, equally often leading to sterile dead ends. What the 
mathematicians of the mid- 1 850s had considered inviolable rules turned 
out to be merely convenient assumptions that made life simpler for alge­
braists but did not always match the deeper needs of mathematics itself. 

In the brave new post-Galois world, algebra was no longer just about 
using symbols for numbers in equations. It was about the deep structure 
of equations-not numbers but processes, transformations, symmetries. 
These radical innovations changed the face of mathematics. They made it 
more abstract, but also more general and more powerful. And the whole 
area had a weird, often baffling beauty. 

Until the Renaissance mathematicians of Bologna started wondering 
whether minus one could have a sensible square root, all of the numbers 
appearing in mathematics belonged to a single system. Even today, as a 
legacy of historical confusion about the relation of mathematics to reality, 
this system is known as the real numbers. The name is unfortunate, be­
cause it suggests that these numbers somehow belong to the fabric of the 
universe rather than being generated by human attempts to understand it. 
They are not. They are no more real than the other "number systems" in­
vented by human imagination over the past 1 50 years. They do, however, 
bear a more direct relation to reality than most new systems. They corre­
spond very closely to an idealized form of measurement. 

A real number, essentially, is a decimal. Not as regards that specific type 
of notation, which is merely a convenient way to write real numbers in a 
form suitable for calculations, but as regards the deeper properties that 
decimals possess. The real numbers were born from simpler, less ambi­
tious ancestors. First, humanity stumbled its way towards the system of 
"natural numbers," 0, 1 , 2, 3, 4, and so on. I say "stumbled" because in the 
early stages, several of these numbers were not recognized as numbers at 
all. There was a time when ancient Greeks refused to consider 2 a number; 
it was too small to be typical of "numerosity." Numbers began at 3. Even­
tually, they allowed that 2 was as much a number as 3, 4, or 5, but then 
they balked at 1 .  After all, if someone claimed to have "a number of 
cows," and then you found that he owned just one cow, he was guilty of  
wild exaggeration. "Number" surely meant "plurality," which ruled out 
the singular. 



1 4 4 W H Y  B E A U T Y  I S  T R U T H  

But a s  notational systems developed, i t  became blindingly obvious that 
1 was just  as much a part of the computational system as its larger 
brethren. So it became a number-but a special, very small one. In some 
ways it was the most important number of all, because that's where num­
bers started. Adding lots of 1 's together got you everything else-and for 
a time the notation did literally that, so that "seven" would be written as 
seven strokes, 1 1 1 1 1 1 I .  

Much later, Indian mathematicians recognized that there was an even 
more important number that preceded 1 .  That wasn't where numbers started, 
after all. They started at zero--now symbolized by 0. Later still, it turned 
out to be useful to throw negative numbers into the mix-numbers less than 
nothing. So the negative whole numbers joined the system, and humanity in­
vented the integers: . . .  , -3, -2, -1 , 0, 1 ,  2, 3, . . .  But it didn't stop there. 

The problem with whole numbers is that they fail to represent many 
useful quantities. A farmer trading grain, for instance, might wish to spec­
ify a quantity of wheat somewhere between 1 sack and 2 sacks. If it 
seemed about midway between, then it constituted 1 Y2 sacks. Maybe it was 
a bit less, 1 1.13, or a bit more, 12;3. And so fractions were invented, with a va­
riety of notations. Fractions interpolated between the whole numbers. 
Sufficiently complicated fractions interpolated exceedingly finely, as we 
have already seen with Babylonian arithmetic. Surely any quantity could be 
represented by a fraction. 

Enter Pythagoras and his eponymous theorem. An immediate conse­
quence is that the length of the diagonal of a unit square is a number 
whose square is exactly 2. That is to say, the diagonal has length equal to 
the square root of 2. Such a number must exist, because you can draw a 
square and it obviously has a diagonal, and the diagonal must have length. 
But as Hippasus realized to his sorrow, whatever the square root of 2 
might be, it cannot be an exact fraction. It is irrational. So even more num­
bers were needed to fill invisible gaps in the system of fractions. 

Eventually, this process seemed to halt. The Greeks abandoned numerical 
schemes in favor of geometry, but in 1 585, a Flemish mathematician and 
engineer named Simon Stevin, who lived in the town of Bruges, was ap­
pointed by William the Silent to tutor his son Maurice of Nassau. Stevin 
rose to become inspector of the dikes, quartermaster-general of the army, 
and minister of finance. These appointments, especially the last two, im-
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pressed on him the need for proper bookkeeping, and he borrowed the 
clerical systems of the Italians. Seeking a way of representing fractions 
that had the flexibility of Hindu-Arabic place notation and the fine preci­
sion of Babylonian sexagesimals, Stevin came up with a base-ten analogue 
of the Babylonian base-60 system: decimals. 

Stevin published an essay describing his new notational system. He was 
sufficiently alert to marketing issues to include a statement that the ideas 
had been subjected to "a thorough trial by practical men who found it so 
useful that they had voluntarily discarded the short cuts of their own in­
vention to adopt this new one." Further, he claimed that his decimal sys­
tem "teaches how all computations that are met in business may be 
performed by integers alone without the aid of fractions." 

Stevin's notation does not use today's decimal point, but it is directly re­
lated. Where we would write 3. 1 41 6, Stevin wrote 3 @ 1 CD 4 ® 1 ® 6 
0. The symbol @ indicated a whole number, CD indicated one tenth, ® 
one hundredth, and so on. As people got used to the system they dis­
pensed with CD ,  ® ,  etc. , and retained only @ , which mutated into the 
decimal point. 

We can't actually write the square root of two in decimals-not if we 
ever plan to stop. But neither can we write the fraction lJ3 in decimals. It is 
close to 0.33, but 0.333 is closer, and 0.3333 is closer still. An exact repre­
sentation exists-to use that word in a novel way--only if we contem­
plate an infinitely long list of 3 's. But if that's acceptable, we can in 
principle write down the square root of two exactly. There's no evident 
pattern in the digits, but by taking enough of them we can get a number 
whose square is as close to 2 as we please. Conceptually, if we take all of 
them, we get a number whose square is exactly 2. 

With the acceptance of "infinite decimals," the real number system was 
complete. It could represent any number required by a businessman or 
mathematician to any desired accuracy. Every conceivable measurement 
could be stated as a decimal. If it was useful to write down negative num­
bers, the decimal system handled them with ease. But no other kind of 
number could possibly be needed. There were no gaps left to fill. 

•· .. t •• • 
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That confounded cubic formula of Cardano's seemed to be telling us 
something, but whatever it was, it was terribly obscure. If you started with 
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an  apparently harmless cubic---one where you knew a root-the formula 
did not give you that answer explicitly. Instead it offered a messy recipe re­
quiring you to take cube roots of things that were even messier, and those 
things seemed to ask for the impossible, the square root of a negative 
number. The Pythagoreans had balked at the square root of two, but the 
square root of minus one was even more baffling. 

For several hundred years, the possibility of giving sensible meaning to 
the square root of minus one had flitted in and out of the collective 
mathematical consciousness. No one had any idea whether such a num­
ber could exist. But they began to realize that it would be extremely use­
ful if it did. 

At first, such "imaginary" quantities had exactly one use: to indicate 
that a problem had no solutions. If you wanted to find a number whose 
square was minus one, the formal solution "square root of minus one" 
was imaginary, so no solution existed. No less a thinker than Rene 
Descartes made just this point. In 1 637 he distinguished "real" numbers 
from "imaginary" ones, insisting that the presence of imaginaries signals 
the absence of solutions. Newton said the same thing. But both of these 
luminaries were reckoning without Bombelli, who had noticed centuries 
earlier that sometimes imaginaries signal the presence of solutions. But the 
signal is hard to decipher. 

In 1 673 the English mathematician John Wallis, who was born in Ash­
ford, about fifteen miles from my hometown in the county of Kent, made 
a fantastic breakthrough. He found a simple way to represent imaginary 
numbers-even "complex" ones that combined real numbers with imagi­
naries-as points in the plane. The first step is the now-familiar concept 
of the real "number line," a kind of ruler extending to infinity in both di­
rections, with 0 in the middle, the positive real numbers wandering off to 
the right, and the negative ones to the left. 

Every real number can be located on the number line. Each successive 
decimal place requires a subdivision of the unit length into ten, a hundred, 
a thousand, etc. , equal parts, but that is no problem. Numbers like J2 can 

be located as accurately as we wish, 
somewhere in between 1 and 2, a bit to 
the left of 1 .5 .  The number Jt sits a little 

I I I 
-3 -2 - 1 o 

The rea l number l ine .  

1 2 3 
to the right of 3, and so on. 

But where does R go? There is no 
place for it on the real number line. It is 



neither positive nor negative; it can go 
neither to the right nor to the left of o. 

So Wallis put it somewhere else. He 
introduced a second number line, to in­
clude the imaginaries-the multiples of 
i-and placed it at right angles to the real 
number line. It was literally a case of 
"lateral thinking." 

The two number lines, real and imagi­
nary, have to cross at o. It is very easy to 
prove that if numbers make sense at all, 
then 0 times i must equal 0, so the origins 
of the real and imaginary lines coincide. 

A complex number consists of two 
parts : one real, one imaginary. To locate 
this number in the plane, Wallis told his 
readers to measure off the real part 
along the horizontal "real" line, and then 
measure off the imaginary part verti­
cally-parallel to the imaginary line. 

This proposal completely solved the 
problem of giving meaning to imaginary 
and complex numbers. It was simple but 
decisive, a true work of genius. 

It was totally ignored. 

-3 
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-2 - 1  

3 i  

2 i  

. 1 - I  
-2i 

-3i 

2 3 

Two copies of the real  number l i ne, 

p laced at r ight ang les. 

-3 -2 - 1  

3 i  
3+2i 

2i  • 

· 1  2 3 - I  
-2i  

-3i 

The complex p lane accord ing to 

Wa l l is. 

Despite the lack of public recognition, Wallis's breakthrough must have 
percolated into the mathematical consciousness, because mathematicians 
started to employ subconscious images that related directly to Wallis's ba­
sic idea: there is no complex number line, there is a complex plane. 

As mathematics became more versatile, mathematicians started trying to 
calculate ever more complicated things. In 1 702, Johann Bernoulli, trying 
to solve a calculus problem, found that he needed to evaluate the logarithm 
of a complex number. By 1 7 1 2, Bernoulli and Leibniz were doing battle 
over a core issue: what is the logarithm of a negative number? If you could 
solve that, you could find the logarithm of any complex number because 
the logarithm of a number's square root is just half the logarithm of that 
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number. So  the logarithm of  i i s  half that of  -1 . But what i s  the logarithm 
of -1 ? 

The issue at stake was simple. Leibniz believed the logarithm of -1 had 
to be complex. Bernoulli said it had to be real. Bernoulli based his con­
tention on a simple piece of calculus ;  Leibniz objected that neither the 
method nor the answer made sense. In 1 749, Euler resolved the contro­
versy, coming down heavily in favor of Leibniz. Bernoulli, he pointed out, 
had forgotten something. His calculus calculation was of a kind that in­
volved the addition of an "arbitrary constant." In his enthusiasm for com­
plex calculus, Bernoulli had tacitly assumed that this constant was zero. It 
wasn't. It was imaginary. This omission explained the discrepancy between 
Bernoulli's answer and Leibniz's. 

The pace of "complexification" of mathematics was heating up. More 
and more ideas originating in the study of real numbers were being ex­
tended to complex ones. In 1 797, a Norwegian named Caspar Wessel pub­
lished a method to represent complex numbers as points in a plane. 
Caspar came from a family of church ministers and was the sixth of four­
teen children. At that time, Norway had no universities but was united 
with Denmark, so in 1 76 1  he went to the University of Copenhagen. He 
and his brother Ole studied law, and Ole worked on the side as a surveyor, 
to stretch the family finances. Later, Caspar became Ole's assistant. 

While working as a surveyor, Caspar invented a way to represent the 
geometry of the plane-especially its lines and their directions-in terms 
of complex numbers. Conversely, his ideas could be seen as representing 
complex numbers in terms of the geometry of the plane. He presented 
the work-his one and only research paper in mathematics-to the Royal 
Danish Academy in 1 797. 

Hardly any leading mathematicians read Danish, and the work lan­
guished unread until it was translated into French a century later. Mean­
while, the French mathematician Jean-Robert Argand independently had 
the same idea and published it in 1 806. By 1 81 1  it had occurred to Gauss, 
independently again, that complex numbers could be viewed as the points 
of a plane. The terms "Argand diagram," "Wessel plane," and "Gauss 
plane" began to circulate. Different nationalities tended to employ differ­
ent phrases. 

Hamilton took the final step. In 1 837, almost three hundred years after 
Cardano's formula had suggested that "imaginary" numbers might be use-
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ful, Hamilton removed the geometric element and reduced complex num­
bers to pure algebra. His idea was simple; it was implicit in Wallis's pro­
posal and in the equivalent ideas of Wessel, Argand, and Gauss. But no 
one had made it explicit. 

Algebraically, said Hamilton, a point in the plane can be identified with 
a pair of real numbers, its coordinates (x, y) . If you look at Wallis's dia­
gram (or Wessel's, Argand's, or Gauss's) you can see that x is the real part 
of the number and y is its imaginary part. A complex number x + iy is 
"really" just a pair of real numbers, (x, y) .  You can even lay down rules for 
adding and multiplying these pairs, and the main step is to observe that 
since i corresponds to the pair (0, 1 ) ,  then (0, 1 )  X (0, 1 )  must equal 
(-1 , 0) . At this point Gauss revealed, in a letter to the Hungarian geometer 
Wolfgang Bolyai, that exactly the same idea had occurred to him in 1 83 1 .  
Once again, the fox had covered his tracks-so completely that nothing 
had been visible. 

Problem solved. A complex number is just a pair of real numbers, ma­
nipulated according to a short list of simple rules. Since a pair of real num­
bers is surely just as "real" as a single real number, real and complex 
numbers are equally closely related to reality, and "imaginary" is misleading. 

Today's view is rather different: it is that "real" is what's misleading. Both 
real and imaginary numbers are equally figments of human imagination . 

.. �!.�., 

.

.
...

.
•.

.
...

. 

The reaction to Hamilton's solution of a three-hundred-year-old conun­
drum was distinctly muted. Once mathematicians had woven the notion 
of complex numbers into a powerful coherent theory, fears about the ex­
istence of complex numbers became unimportant. But Hamilton's use of 
pairs turned out nonetheless to be very significant. Even though the issue 
of complex numbers was no longer a source of excitement, the idea of 
building new number systems from old ones took root in the mathemati­
cal consciousness. 

Complex numbers, it turned out, were useful not only in algebra and 
basic calculus. They constituted a powerful method for solving problems 
about fluid flow, heat, gravity, sound, almost every area of mathematical 
physics. But they had one major limitation: they solved these problems in 
two-dimensional space, not the three that we live in. Some problems, such 
as the motion of the skin of a drum or the flow of a thin layer of fluid, 
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can be  reduced to two dimensions, so  the news isn't all bad. But mathe­
maticians became increasingly irritated that their complex-number meth­
ods could not be extended from a plane to space of three dimensions. 

Might there be an undiscovered extension of the number system to 
three dimensions? Hamilton's formalization of complex numbers as pairs 
of real numbers suggested a way to approach this proposal: try to set up a 
number system based on triples (x, } z) . The problem was that no one had 
worked out an algebra of triples. Hamilton decided to try. 

Adding triples was easy: you could take a hint from complex numbers 
and just add corresponding coordinates. This kind of arithmetic, known 
today as "vector addition," obeys very pleasant rules, and there is only one 
sensible way to do it. 

The bugbear was multiplication. Even for the complex numbers, multi­
plication does not work like addition. You do not multiply two pairs of 
real numbers by separately multiplying their first and second components. 
If you do, a lot of pleasant things happen-but two fatally unpleasant 
ones happen as well. 

The first is that there is no longer a square root of minus one. 
The second is that you can multiply two nonzero numbers together and 

get zero. Such "divisors of zero" play merry hell with all of the usual alge­
braic methods, such as ways to solve equations. 

For the complex numbers we can overcome this obstacle by choosing 
a less obvious rule for multiplication, which is what Hamilton did. But 
when he tried similar tricks on triples of numbers, he got a horrible 
shock. Try as he might, he could not avoid some fatal defect. He could 
get a square root for minus one, but only by introducing divisors of zero. 
Getting rid of divisors of zero seemed to be completely impossible, 
whatever else he did. 

" �.!�" 

...
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If you're thinking that this sounds a bit like attempts to solve the quintic, 
you're onto something. If many capable mathematicians try something 
and fail, it is conceivable that it may be impossible. If there is one big 
thing mathematics has taught us, it is that many problems do not have so­
lutions. You can't find a fraction whose square is 2. You can't trisect an an­
gle with straightedge and compass. You can't solve the quintic by radicals. 
Mathematics has limits. Maybe you can't construct a three-dimensional al­
gebra with all the nice properties you would like it to have. 
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If you're serious about finding out whether that is indeed the case, a 
program of research opens up. First you need to specify the properties 
you want your three-dimensional algebra to have. Then you must analyze 
the consequences of those properties. Given enough information from 
that program, you can search for features that such an algebra must have if 
it does exist, and reasons why it might not exist. 

At least, that's what you would do today. Hamilton's approach was not 
so systematic. He tacitly assumed that his algebra must have "all" reason­
able properties, and suddenly realized that one of them might have to be 
dispensed with. More significantly, he realized that an algebra of three di­
mensions was not in the cards. The closest he could get was four. Quadru­
ples, not triples. 

Back to those elusive rules of algebra. When mathematicians do alge­
braic calculations, they rearrange symbols in systematic ways. Recall that 
the original Arabic name "al-jabr" means "restoration"-what nowadays 
we call "move the term to the other side of the equation and change its 
sign." Only within the last 1 50 years have mathematicians bothered to 
make explicit lists of the rules behind such manipulations, deriving other 
well-known rules as logical consequences. This axiomatic approach does 
for algebra what Euclid did for geometry, and it took mathematicians only 
two thousand years to get the idea. 

To set the scene, we can focus on three of these rules, all related to 
multiplication. (Addition is similar but more straightforward; multiplica­
tion is where everything starts to go pear-shaped.) Children learning their 
multiplication tables eventually notice some duplication of effort. Not 
only does three times four make twelve: so does four times three. If you 
multiply two numbers together you get the same result whichever one 
comes first. This fact is called the commutative law, and in symbols it tells 
us that ab = ba for any numbers a and b. This rule also holds in the ex­
tended system of complex numbers. You can prove this by examining 
Hamilton's formulas for how to multiply pairs. 

A subtler law is the associative law, which says that when you multiply 
three numbers together in the same order, it makes no difference where 
you start. For example, suppose I want to work out 2 x 3 x 5. I can start 
with 2 x 3, getting 6, and then multiply 6 by 5. Alternatively, I can start 
with 3 x 5, which is 1 5, and then multiply 2 by 1 5 . Either method yields 
the same result, namely 30. The associative law states that this is always the 
case; in symbols it says that (ab)c = a(bc) ,  where the parentheses show the 
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two ways to do the multiplication. Again, this rule holds for both real and 
complex numbers, and this can be proved using Hamilton's formulas. 

A final, very useful rule-let me call it the division law, although you 
will find it in the textbooks as "existence of a multiplicative inverse"­
states that you can always divide any number whatsoever by any nonzero 
number. There are good reasons to forbid division by zero: the main one 
is that it seldom makes sense. 

We saw earlier that you can manufacture an algebra of triples using an 
"obvious" form of multiplication. This system satisfies the commutative 
law and the associative law. But it fails to obey the division law. 

Hamilton's great inspiration, reached after hours of fruitless searching 
and calculation, was this: it is possible to form a new number system in 
which both the associative law and the division law are valid, but you have 
to sacrifice the commutative law. Even then, you can't do it with triples of 
real numbers. You have to use quadruples. There is no "sensible" three­
dimensional algebra, but there is a fairly nice four-dimensional one. It is 
the only one of its kind, and it falls short of the ideal in just one respect: 
the commutative law fails. 

Does that matter? Hamilton's biggest mental block was in thinking that 
the commutative law was essential. All that changed in an instant when, in­
spired by who knows what, he suddenly understood how to multiply 
quadruples. The date was 1 6  October 1 843. Hamilton and his wife were 
walking along the towpath of the Royal Canal, heading for a meeting of 
the prestigious Royal Irish Academy in Dublin. His subconscious mind 
must have been churning away at the problem of three-dimensional alge­
bra, because inspiration suddenly struck. "I then and there felt the gal­
vanic circuit of thought close," he wrote in a subsequent letter, "and the 
sparks which fell from it were the fondamental equations between i,j, k; ex­
actly such as I have used them ever since." 

So overcome was Hamilton that he immediately carved the formulas 
into the stonework of Broome Bridge (he called it "Brougham") . The 
bridge survives, but not the carving-though there is a commemorative 
plaque. The formulas also survive: 

i 2  = p = k 2  = ijk = -1 

These are very pretty formulas, with a lot of symmetry. But what you are 
probably wondering is, where are the quadruples? 
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Complex numbers can be written as pairs (x, y) , but they are usually 
written as x + iy where i = R .  In the same manner, the numbers Hamil­
ton had in mind could be written either as quadruples (x, � z, w) or as a 
combination x + iy + jz + kw. Hamilton's formulas use the second nota­
tion; if you are of a formal turn of mind, you may prefer to use quadru­
ples instead. 

Hamilton called his new numbers quaternions. He proved that they 
obey the associative law and-remarkably, as it later transpired-the divi­
sion law. But not the commutative law. The rules for multiplying quater­
nions imply that ij = k, but ji = -k. 

The system of quaternions contains a copy of the complex numbers, 
the quaternions of the form x + iy. Hamilton's formulas show that -1 
does not have just two square roots, i and -i. It also has j, -j, k, and -k. In 
fact there are infinitely many different square roots of minus one in the 
quaternion system. 

So along with the commutative law, we have also lost the rule that a 
quadratic equation has two solutions. Fortunately, by the time quaternions 
were invented, the focus of algebra had shifted away from the solution of 
equations. The advantages of quaternions greatly outweighed their de­
fects. You just had to get used to them. 

In 1 845, Thomas Disney visited Hamilton and brought his daughter, 
William's childhood love Catherine, with him. By then she had lost her 
first husband and married again. The encounter reopened old wounds, 
and Hamilton's reliance on alcohol became more severe. He made such a 
complete fool of himself at a scientific dinner in Dublin that he went on 
the wagon and drank only water for the next two years. But when the as­
tronomer George Airy began taunting him for his abstinence, Hamilton 
responded by downing alcohol in large quantities. From then on he was a 
chronic alcoholic. 

Two uncles died, and a friend and colleague committed suicide; then 
Catherine started writing to him, which made his depression worse. She 
quickly realized that what she was doing was not proper for a respectable 
married woman, and made a half-hearted attempt to kill herself. She sepa­
rated from her husband and went to live with her mother. 

Hamilton kept writing to her, through her relatives. By 1 853 she had re­
newed contact, sending him a small gift. Hamilton responded by going to 
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see her, bearing a copy of  his book on quaternions. Two weeks later, she 
was dead, and Hamilton was grief-stricken. His life became more and 
more disorderly; uneaten food was found mixed with his mathematical pa­
pers after his death, which occurred in 1 865-attributed to gout, a com­
mon disease of heavy drinkers. 

�l·� 
...
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Hamilton believed quaternions to be the Holy Grail of algebra and 
physics-the true generalization of complex numbers to higher dimen­
sions, and the key to geometry and physics in space. Of course, space has 
three dimensions, while quaternions have four, but Hamilton spotted a 
natural subsystem with three dimensions. These were the "imaginary" 
quaternions bi + cj + dk. Geometrically, the symbols i, j, k can be inter­
preted as rotations about three mutually perpendicular axes in space, al­
though there are some subtleties : basically, you have to work in a geometry 
where a full circle contains 7200, not 3600 • This quirk aside, you can see 
why Hamilton found them useful for geometry and physics. 

The missing "real" quaternions behaved just like real numbers. You 
couldn't eliminate them altogether, because they were likely to turn up 
whenever you carried out algebraic calculations, even if you started with 
imaginary quaternions. If it had been possible to stay solely within the do­
main of imaginary quaternions, there would have been a sensible three­
dimensional algebra, and Hamilton's quest would have succeeded. The 
four-dimensional system of quaternions was the next best thing, and the 
natural three-dimensional system embedded rather tidily inside it was just 
as useful as a purely three-dimensional algebra would have been. 

Hamilton devoted the rest of his life to quaternions, developing their 
mathematics and promoting their applications to physics. A few devoted 
followers sung their praises. They founded a school of quaternionists, and 
when Hamilton died the reins were taken up by Peter Tait in Edinburgh 
and Benjamin Peirce at Harvard. 

Others, however, disliked quaternions-partly for their artificiality, but 
mostly because they believed they had found something better. The most 
prominent of the dissenters were the Prussian Hermann Grassmann and 
the American Josiah Willard Gibbs, now recognized as the creators of 
"vector algebra." Both of them invented useful types of algebra with any 
number of dimensions. In their work there was no limit to four dimen­
sions or to the three-dimensional subset of imaginary quaternions. The al-
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gebraic properties of these vector systems were not as elegant as Hamil­
ton's quaternions. You couldn't divide one vector by another, for instance. 
But Grassmann and Gibbs preferred general concepts that worked, even 
if they lacked a few of the usual features of numbers. It may have been 
impossible to divide one vector by another, but who cared? 

Hamilton went to his grave believing that quaternions were his greatest 
contribution to science and mathematics. For the next hundred years, 
hardly anyone save Tait and Peirce would have agreed, and quaternions re­
mained an obsolete backwater of Victorian algebra. If you wanted an ex­
ample of the sterility of mathematics for its own sake, quaternions were 
just the ticket. Even in university courses on pure mathematics, quater­
nions never appeared or were shown as a curiosity. According to Bell, 

Hamilton's deepest tragedy was neither alcohol nor marriage but 
his obstinate belief that quaternions held the key to the mathemat­
ics of the physical universe. History has shown that Hamilton trag­
ically deceived himself when he insisted "I still must assert that this 
discovery appears to me to be as important for the middle of the 
1 9th Century as the discovery of fluxions was for the close of the 
seventeenth." Never was a great mathematician so hopelessly 
wrong. 

Really? 
Quaternions may not have developed quite along the lines that Hamil­

ton laid down, but their importance grows every year. They have become 
absolutely fundamental to mathematics, and we will see that the quater­
nions and their generalizations are fundamental to physics, too. Hamilton's 
obsession opened the door to vast tracts of modern algebra and mathe­
matical physics. 

Never was a quasi-historian so hopelessly wrong . 

.. �.!.�., 

..
..

..•..
..

.. 

Hamilton may have exaggerated the applications of quaternions, and tor­
tured them into performing tricks to which they were not really suited, 
but his faith in their importance is beginning to appear justified. Quater­
nions have developed a strange habit of turning up in the most unlikely 
places. One reason is that they are unique. They can be characterized by a 
few reasonable, relatively simple properties-a selection of the "laws of 
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arithmetic," omitting only one important law-and they constitute the 
only mathematical system with that list of properties. 

This statement requires unpacking. 
The only number system that is familiar to most people on the planet is 

the real numbers. You can add, subtract, multiply, and divide real numbers, 
and your result is always a real number. Of course, division by zero is not 
tolerated, but aside from that necessary limitation, you can apply lengthy 
series of arithmetic operations without ever leaving the system of real 
numbers. 

Mathematicians call such a system a field. There are many other fields, 
such as the rationals and the complex numbers, but the real field is special. It 
is the only field with two further properties :  it is ordered, and it is complete. 

"Ordered" means that the numbers occur in a linear order. The reals 
are strung out along a line, with negative numbers to the left and positive 
numbers to the right. There are other ordered fields, such as the rational 
numbers, but unlike the other ordered fields the reals are also complete. 
This extra property {whose full statement is somewhat technical} is the 
one that allows numbers like J2 and :rt to exist. Basically, the completeness 
property says that infinite decimals make sense. 

It can be proved that the real numbers constitute the only complete or­
dered field. That is why they play such a central role in mathematics. They 
are the only context in which arithmetic, "greater than," and basic opera­
tions of calculus can be carried out. 

The complex numbers extend the real numbers by throwing in a new 
kind of number, the square root of minus one. But the price we pay for 
being able to take square roots of negative numbers is the loss of order. 
The complex numbers are a complete system but are spread out across a 
plane rather than aligned in a single orderly sequence. 

The plane is two-dimensional, and two is a finite integer. The complex 
numbers are the only field that contains the real numbers and has finite di­
mension--other than the real numbers themselves, with dimension one. 
This implies that the complex numbers, too, are unique. For many impor­
tant purposes, the complex numbers are the only gadget that can do the 
job. Their uniqueness makes them indispensable. 

The quaternions arise when we try to extend the complex numbers, in­
creasing the dimension (while keeping it finite) and retaining as many of 
the laws of algebra as possible. The laws we want to keep are all the usual 
properties of addition and subtraction, most of the properties of multi-
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plication, and the possibility of dividing by anything other than zero. The 
sacrifice this time is more serious;  it is what caused Hamilton so much 
heartache. You have to abandon the commutative law of multiplication. 
You just have to accept that as a brutal fact, and move on. When you get 
used to it, you wonder why you ever expected the commutative law to 
hold in any case, and start to think it a minor miracle that it holds for the 
complex numbers. 

Any system with this mix of properties, commutative or not, is called a 
division algebra. 

The real numbers and the complex numbers are division algebras, be­
cause we don't rule out commutativity of multiplication, we just don't de­
mand it. Every field is a division algebra. But some division algebras are 
not fields, and the first to be discovered was the quaternions. In 1 898, 
Adolf Hurwitz proved that the system of quaternions is also unique. The 
quaternions are the only finite-dimensional division algebra that contains 
the real numbers and is not equal either to the real numbers or the com­
plex numbers. 

There is a curious pattern here. The dimensions of the reals, com­
plexes, and quaternions are 1 ,  2, and 4. This looks suspiciously like the 
start of a sequence, the powers of 2. A natural continuation would be 8, 
1 6, 32, and so on. 

Are there interesting algebraic systems with those dimensions? 
Yes and no. But you'll have to wait to see why, because the story of 

symmetry now enters a new phase: connections with differential equa­
tions, the most widely used way to model the physical world, and the lan­
guage in which most of the physicists' laws of nature are couched. 

Again, the deepest aspects of the theory boil down to symmetry, but 
with a new twist. Now the symmetry groups are not finite, but "continu­
ous." Mathematics was about to be enriched by one of the most influen­
tial programs of research ever conducted. 
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M arius Sophus Lie studied science only because his poor eyesight dis­
qualified him from any military profession. When Sophus, as he 
came to be called, graduated from the University of Christiania in 
1 865, he had taken a few mathematics courses, including one on Ga-

lois theory given by the Norwegian Ludwig Sylow, but he showed no spe­
cial talent in the subject. For a while he dithered-he knew that he wanted 
an academic career but was unsure whether it should be in botany, zool­
ogy, or perhaps astronomy. 

The library records at the university show him taking out more and 
more books on mathematical topics. In 1 867, in the middle of the night, 
he was struck by a vision of his life's work. His friend Ernst Motzfeldt was 
astonished to be woken from sleep by an excited Lie, who was shouting "I 
have found it, it is quite simple!" 

What he had found was a new way to think about geometry. 
Lie began to study the works of the great geometers, such as the Ger­

man Julius Plucker and the Frenchman Jean-Victor Poncelet. From 
Plucker he got the idea of geometries whose underlying elements are not 
Euclid's familiar points but other objects-lines, planes, circles. He pub­
lished a paper outlining his big idea in 1 869, at his own expense. Like Ga­
lois and Abel before him, he discovered that his ideas were too 
revolutionary for the old guard, and the regular journals did not wish to 
publish his researches. But Ernst refused to let his friend become discour­
aged, and kept him working on his geometry. Eventually, one of Lie's 
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papers was published in  a prestigious journal and was favorably received. 
It gained Lie a scholarship. Now he had the money to travel, visit leading 
mathematicians, and discuss his ideas with them. He went to the hotbeds 
of Prussian and German mathematics, Gottingen and Berlin, and talked 
to the algebraists Leopold Kronecker and Ernst Kummer and the analyst 
Karl Weierstrass. He was impressed by Kummer's way of doing mathe­
matics, less so by Weierstrass's. 

The most significant meeting, however, was in Berlin with Felix 
Klein-who, it happened, had been a student of Plucker, whom Lie 
greatly admired and wished to emulate. Lie and Klein had very similar 
mathematical backgrounds, but their tastes differed considerably. Klein, 
basically an algebraist with geometrical leanings, enjoyed working on spe­
cial problems with inner beauty; Lie was an analyst who liked the broad 
sweep of general theories. Ironically, it was Lie's general theories that gave 
mathematics some of its most important special structures, which were 
and still are extraordinarily beautiful, extraordinarily deep, and mostly al­
gebraic. These structures might not have been discovered at all were it not 
for Lie's push to generality. If you try to understand all possible mathe­
matical objects of a certain kind, and succeed, you will inevitably find 
many that have unusual features. 

In 1 870, Lie and Klein met again in Paris. And there, Jordan converted 
Lie to the cause of group theory. There was a growing realization that 
geometry and group theory were two sides of the same coin, but it took a 
long time for the idea to become fully formed. Lie and Klein did some 
joint work, trying to make the connection between groups and geometry 
more explicit. Eventually, Klein crystallized the thought in his "Erlangen 
Program" of 1 872, according to which geometry and group theory are 
identical. 

In modern language, the idea sounds so simple that it should have been 
obvious all along. The group that corresponds to any given geometry is 
the symmetry group of that geometry. Conversely, the geometry correspon­
ding to any group is whatever object it is the symmetry group of. That is, 
the geometry is defined by those things that are invariant under the group. 

For example, the symmetries of Euclidean geometry are those transfor­
mations of the plane that preserve lengths, angles, lines, and circles. This 
is the group of all rigid motions of the plane. Conversely, anything that is 
invariant under rigid motions naturally falls within the purview of Euclid-
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ean geometry. Non-Euclidean geometry simply employs different trans­
formation groups. 

Why, then, bother converting geometry into group theory? Because it 
gives you two different ways to think about geometry, and two different 
ways to think about groups. Sometimes one way is easier to understand, 
sometimes the other. Two points of view are better than one. 

Relations between France and Prussia were deteriorating fast. Emperor 
Napoleon III thought he could shore up his declining popularity by start­
ing a war with Prussia. Bismarck sent the French a stinging telegram, and 
the Franco-Prussian War was declared on 1 9  July 1 870. Klein, a Prussian 
in Paris, deemed it prudent to head back to Berlin. 

Lie, however, was Norwegian and was greatly enjoying his visit, so he 
decided to stay in Paris. But he changed his mind when he realized that 
France was losing the war and the German army was advancing on Metz. 
Although he was a citizen of a neutral country, it was not safe to remain in 
a potential war zone. 

Lie decided to go on a hiking trip, heading for Italy. He did not get far; 
the French authorities caught him at Fontainebleau, about 25 miles south­
east of Paris, carrying a number of documents covered in incomprehensi­
ble symbols. Since these were evidently in code, Lie was obviously spying 
for the Germans, and he was placed under arrest. It took the intervention 
of a leading French mathematician, Gaston Darboux, to convince the au­
thorities that the writings were mathematics. Lie was let out of prison, the 
French army surrendered, the Germans began a blockade of Paris, and 
Lie once more headed for Italy-this time successfully. From there he re­
turned to Norway. Along the way he dropped in on Klein, who had re­
mained safe in Berlin. 

Lie received his doctorate in 1 872. The Norwegian academic world was 
so impressed by his work that the University of Christiania created a posi­
tion especially for him in the same year. With his former teacher Ludwig 
Sylow, he took on the task of editing Abel's collected works. In 1 874 he 
married Anna Birch, eventually fathering three children. 

By now, Lie had focused on a particular topic that he felt was ripe for 
development. There are many kinds of equations in mathematics, but two 
types are especially important. The first is algebraic equations, of the kind 



1 6 2 W H Y  B E A U T Y  I S  T R U T H  

studied so  effectively by Abel and Galois. The second i s  differential equa­
tions, introduced by Newton in his work on the laws of nature. Such equa­
tions involve concepts from calculus, and instead of dealing directly with 
some physical quantity, they describe how that quantity changes as time 
passes. More precisely, they specify the rate of change of the quantity. For 
example, Newton's most important law of motion states that the accelera­
tion experienced by a body is proportional to the total force acting on it. 
Acceleration is the rate of change of velocity. Instead of telling us directly 
what the body's velocity is, the law tells us the rate of change of velocity. 
Similarly, another equation that Newton developed, to explain how the 
temperature of an object changes when it cools, states that the rate of 
change of temperature is proportional to the difference between the tem­
perature of the object and the temperature of its surroundings. 

Most of the important equations in physics-those that concern the 
flow of a fluid, the action of gravity, the motion of the planets, the trans­
fer of heat, the movement of waves, the action of magnetism, and the 
propagation of light and sound-are differential equations. As Newton 
first realized, nature's patterns generally become simpler and easier to spot 
if we look at the rates of change of the quantities that we want to observe, 
not at those quantities themselves. 

Lie posed himself a momentous question. Is there a theory of differen­
tial equations analogous to Galois 's theory of algebraic ones? Is there a 
way to decide when a differential equation can be solved by specified 
methods? 

The key, once more, was symmetry. Lie now realized that some of his 
results in geometry could be reinterpreted in terms of differential equa­
tions. Given one solution of a particular differential equation, Lie could 
apply a transformation (from a particular group) and prove that the result 
was also a solution. From one solution you could get many, all connected 
by the group. In other words, the group consisted of symmetries of the 
differential equation. 

It was a broad hint that something beautiful awaited discovery. Con­
sider what Galois 's application of symmetries had done for algebraic 
equations. Now imagine doing the same thing for the far more important 
class of differential equations! 
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The groups studied by Galois are all finite. That is, the number of trans­
formations in the group is a whole number. The group of all permuta­
tions on the five roots of a quintic, for example, has 1 20 elements. Many 
sensible groups are infinite, however, including symmetry groups of dif­
ferential equations. 

One common infinite group is the symmetry group of a circle, which 
contains transformations that rotate the circle through any angle whatso­
ever. Since there are infinitely many possible angles, the rotation group of 
the circle is infinite. The symbol for this group is SO(2) . Here "0" stands 
for "orthogonal," meaning that the transformations are rigid motions of 
the plane, and "S" means "special"-rotations do not flip the plane over. 

Circles also have infinitely many axes of reflectional symmetry. If you 
reflect a circle in any diameter, you get the same circle. Adding in the re­
flections leads to a bigger group, 0(2) . 

The groups SO(2) and 0(2) are infinite, but it is a tame type of infinity. 
The different rotations can all be determined by specifying a single num­
ber-the relevant angle. When two rotations are composed, you just add 
the corresponding angles. Lie called this kind of behavior "continuous," 
and in his terminology, SO(2) was therefore a continuous group. And be­
cause only one number is needed to specify an angle, SO(2) is one-dimen­
sional. The same goes for 0(2) , because all we need is a way to distinguish 
reflections from rotations, and this is a matter of a plus or minus sign in 
the algebra. 

The group SO(2) is the simplest example of a Lie group, which has two 
types of structure at the same time: it is a group and also a manifold-a 
multidimensional space. For SO(2) , the manifold is a circle, and the group 
operation combines two points on the circle by adding the corresponding 
angles. 

The ci rcle has infin itely many rotationa l  

symmetries ( left) and infin itely many reflect ional  

symmetries (r ight) . 
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Lie discovered a beautiful feature of  Lie groups: the group structure 
can be "linearized." That is, the underlying curved manifold can be re­
placed by a flat Euclidean space. This space is the tangent space to the 
manifold. Here's how it looks for SO(2) : 

tangent 

From L ie group to L ie a lgebra :  

t h e  tangent space t o  a c i rcle. 

The group structure, when linearized in this fashion, gives the tangent 
space an algebraic structure of its own, which is a kind of "infinitesimal" 
version of the group structure, describing how transformations very close 
to the identity behave. It is called the Lie algebra of that group. It has the 
same dimension as the group, but its geometry is much simpler, being flat. 

There is a price to pay for this simplicity, of course: the Lie algebra cap­
tures most important properties of the corresponding group, but some 
fine detail gets lost. And those properties that are captured undergo subtle 
changes. Nonetheless, you can learn a lot about a Lie group by passing to 
its Lie algebra, and most questions are more easily answered in the Lie al­
gebra setting. 

It turns out-and this was one of Lie's great insights-that the natural 
algebraic operation on the Lie algebra is not the product AB, but the dif­
ference AB - BA, which is called the commutator. For groups like SO(2), 
where AB = BA, the commutator is zero. But in a group like SO(3) , the ro­
tation group in three dimensions, AB - BA is nonzero unless the axes of 
rotation of A and B are either the same or at right angles. So the geometry 
of the group shows up in the behavior of commutators. 

Lie's dream of a "Galois theory" of differential equations was eventu­
ally realized with the creation of a theory of "differential fields" in the 
early 1 900s. But the theory of Lie groups turned out to be far more im­
portant, and more widely applicable, than Lie expected. Instead of being a 
tool to determine whether a differential equation can be solved in specific 
ways, the theory of Lie groups and Lie algebras has pervaded almost every 
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branch of mathematics. "Lie theory" escaped its creator and became 
greater than he ever imagined. 

In hindsight, the reason is symmetry. Symmetry is deeply involved in 
every area of mathematics, and it underlies most of the basic ideas of 
mathematical physics. Symmetries express underlying regularities of the 
world, and those are what drive physics. Continuous symmetries such as 
rotations are closely related to the nature of space, time, and matter; they 
imply various conservation laws, such as the law of conservation of en­
ergy, which states that a closed system can neither gain nor lose energy. 
This connection was worked out by Emmy Noether, a student of Hilbert. 

The next step, of course, is to understand the possible Lie groups, just 
as Galois and his successors sorted out many properties of finite groups. 
Here a second mathematician joined in the hunt. 

Anna Catharina was worried about her son. 
Her doctor had told her that young Wilhelm was "quite weakly and be­

sides very awkward" and "always excited, but a completely impractical 
bookworm." Wilhelm's health improved as he grew, but his bookworm 
tendencies did not. Just before his 39th birthday, he would publish a piece 
of mathematical research that has been described, with justification, as 
"the greatest mathematical paper of all time." Such designations are of 
course subjective, but Wilhelm's paper would certainly be high on any­
one's list. 

Wilhelm Karl Joseph Killing was the son of Josef Killing and Anna 
Catharina Kortenbach. He had one brother, Karl, and one sister, Hedwig. 
Josef was a legal clerk, and Anna was a pharmacist's daughter. They were 
married in Burbach, on the eastern side of central Germany, and soon af­
terward moved to Medebach when Josef became the mayor there. Then 
he was made mayor of Winterberg, and after that mayor of Riithen. 

The family was quite well off and could afford a private tutor to pre­
pare Wilhelm for the gymnasium, which in his case was in Brilon, 50 miles 
west of Dortmund. At school he liked classics-Latin, Hebrew, Greek. A 
teacher named Harnischmacher introduced him to mathematics; Wilhelm 
turned out to be very good at geometry, and resolved to become a mathe­
matician. He attended what is now the Westphalian Wilhelm University of 
Miinster, but was then merely a Royal Academy. The academy did not 
teach advanced mathematics, so Killing taught himself. He read Pliicker's 
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geometrical work and tried to derive some new theorems of  his own. He 
also read Gauss's Disquisitiones Arithmeticae. 

After two years at the Royal Academy he moved to Berlin, where the 
quality of mathematical teaching was much superior, and came under the 
influence of Weierstrass, Kummer, and Hermann von Helmholtz, a math­
ematical physicist who clarified the link between conservation of energy 
and symmetry. Killing wrote a PhD thesis on the geometry of surfaces, 
based on some ideas of Weierstrass, and took a job as a teacher of mathe­
matics and physics, with a sideline in Greek and Latin. 

In 1 875, he married a music lecturer's daughter, Anna Commer. Their 
first two children, both sons, died in infancy; the next two, daughters 
named Maria and Anka, thrived. Later, Killing fathered two more sons. 

By 1 878, he had gone back to his old school, but now as a teacher. He 
had a heavy workload, about 36 contact hours per week, but somehow he 
found the time to continue his mathematical research-the greats always 
do. He published a series of important papers in top journals. 

In 1 882, Weierstrass secured Killing a professorship at the Lyceum 
Hosianum in Braunsberg, where he spent the next ten years. Braunsberg 
had no strong mathematical tradition and offered no colleagues with 
whom to discuss research, but Killing seems not to have needed such 
stimulation. For it was there that he made one of the most important dis­
coveries in the whole of mathematics. It left him rather disappointed. 

What he had hoped to achieve was hugely ambitious : a description of 
all possible Lie groups. The Lyceum did not buy the journals in which Lie 
published, and Killing had very little idea of  Lie's work, but he inde­
pendently discovered the role of Lie algebras in 1 884. So Killing knew 
that each Lie group was associated with a Lie algebra, and he quickly rec­
ognized that Lie algebras would probably be more tractable than Lie 
groups, so his problem reduced to the classification of all possible Lie 
algebras. 

This problem turns out to be desperately hard-we now know that it 
probably has no sensible answer, in the sense that no simple construc­
tion can produce all Lie algebras by a uniform and transparent proce­
dure. So Killing was forced to settle for something far less ambitious: to 
describe the basic building blocks from which all Lie algebras can be as­
sembled. This is a bit like wanting to describe all possible architectural 
styles but having to settle for a list of all possible shapes and sizes of 
brick. 
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These basic building blocks are known as simple Lie algebras. They are 
distinguished by a very similar property to Galois 's idea of a simple group, 
one with no normal subgroups except trivial ones. In fact, a simple Lie 
group has a simple Lie algebra, and the converse is very nearly true as well. 
Amazingly, Killing succeeded in listing all possible simple Lie algebras­
mathematicians call such a theorem a "classification." 

In Killing's eyes, that classification was a very limited version of some­
thing far more general, and he was frustrated by several restrictive as­
sumptions he had been forced to make in order to get anywhere. He was 
particularly irked by the need to assume simplicity, which forced him to 
switch to Lie algebras over the complex numbers rather than the reals. 
The former are better behaved but less directly related to the geometrical 
problems that fascinated Killing. Because of these self-imposed limita­
tions, he did not consider his work worth publishing. 

He did manage to make contact with Lie; not very fruitfully, as it turned 
out. First he wrote to Klein, who put him in touch with Lie's assistant 
Friedrich Engel, then working in Christiania. Killing and Engel hit it off 
immediately, and Engel became a staunch supporter of Killing's work, 
helped him get over some tricky points, and encouraged him to push the 
ideas further. Without Engel, Killing might have given up. 

At first, Killing thought he knew the complete list of simple Lie alge­
bras, and that these were the Lie algebras so(n) and su(n) associated with 
two infinite families of Lie groups: the special orthogonal groups SO(n) ,  
consisting of all rotations in  n-space, and their analogues SU(n) in  com­
plex n-space, the special unitary groups. The historian Thomas Hawkins 
imagined "the amazement with which Engel read Killing's letter with its 
bold conjectures. Here was an obscure professor at a Lyceum dedicated to 
the training of clergymen in the far-away reaches of East Prussia, dis ­
coursing with authority and conjecturing profound theorems on Lie's the­
ory of transformation groups." 

In the summer of 1 886, Killing visited Lie and Engel at Leipzig, where 
both now worked. Unfortunately, there was some friction between Lie 
and Killing; Lie never really appreciated Killing's work and generally tried 
to play down its significance. 

" �!"( 
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Killing quickly discovered that his original conjecture about simple Lie al­
gebras was wrong, for he discovered a new one, whose corresponding Lie 
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group i s  now known a s  G2• It had 1 4  dimensions, and unlike the special 
linear and orthogonal Lie algebras, it did not seem to belong to an infinite 
family. It was a lone exception. 

If this was strange, the final classification, which Killing completed in 
the winter of 1 887, was stranger. To the two infinite families Killing added 
a third, the Lie algebras sp(2n) of what are now known as the symplectic 
groups Sp(2n) . (Nowadays, we split the orthogonal groups into two dif­
ferent subfamilies, those acting on spaces of even dimension and those 
acting on spaces of odd dimension, yielding four families. There are rea­
sons for doing this.) And now the exception G2 had acquired five com­
panions: two of dimension 56, and a short family that petered out, with 
dimensions 78, 1 33, and 248. 

Killing's clas sification proceeded by a lengthy algebraic argument, 
which reduced the entire question to a beautiful problem in geometry. 
From a hypothetical simple Lie algebra he conjured up a configuration of 
points in a multidimensional space, known today as a root system. For ex­
actly three of the simple Lie algebras, the root system lives in a space of 
two dimensions. These root systems look like this: 

The root systems i n  two d imensions. 

These patterns have a great deal of symmetry. In fact, they are reminis­
cent of the patterns you see in a kaleidoscope, where two mirrors set at an 
angle create multiple reflections. The similarity is no coincidence, because 
root systems have wonderful, elegant symmetry groups. Now known as 
Weyl groups (unfair, since they were invented by Killing) , they are multidi­
mensional analogues of the patterns formed by reflecting objects in a 
kaleidoscope. 

The underlying structure of Killing's proof is that the search for all 
possible simple Lie algebras can be carried out by breaking the algebras 
into nice pieces, analogous to structures found in su(n) . The classification 
then reduces to the geometry of those pieces, using their wonderful sym­
metries. Having sorted out the geometry of those pieces, you can now 
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bootstrap your results back to the problem you really wanted to solve: 
finding the possible simple Lie algebras. 

As Killing put it, "The roots of a simple system correspond to a simple 
group. Conversely, the roots of a simple group can be regarded as deter­
mined by a simple system. In this way one obtains the simple groups. For 
each I there are four structures, supplemented for 1 =  2, 4, 6, 7, 8 by excep­
tional simple groups." 

Here "group" was a shortened form of "infinitesimal group," which we 
now call a Lie algebra, and I is the dimension of the root system. 

The four structures that Killing refers to are the Lie algebras su{n) ,  
so{2n) , so{2n+ 1 ) ,  and sp{2n) corresponding to families o f  groups SU{n), 
SO{2n) , SO{2n+ 1 ) ,  and Sp{2n) : the unitary groups, the orthogonal 
groups in spaces of even dimension, the orthogonal groups in spaces of 
odd dimension, and the symplectic groups in spaces of even dimension. 
The symplectic groups are the symmetries of the position-momentum 
variables introduced by Hamilton in his formulation of mechanics, and 
the number of dimensions there is always even because the variables 
come in position-momentum pairs. Aside from these four families, 
Killing claimed that exactly six other simple Lie algebras exist. 

He was nearly right. In 1 894, the French geometer Elie Cartan noticed 
that Killing's two 56-dimensional algebras are really the same algebra viewed 
in two different ways. That means that there are only five exceptional simple 
Lie algebras, corresponding to five exceptional simple Lie groups: Killing's 
old friend Gz, and four others now called F 4' E6, E7, and Es. 

This is an exceedingly curious answer. The infinite families are reason­
able enough; they are all related to various natural types of geometry in 
any number of dimensions. But the five exceptional Lie groups seem un­
related to anything geometric, and their dimensions are bizarre. Why are 
spaces of dimensions 1 4, 56, 78, 1 33, and 248 special? What is so unusual 
about those numbers? 

It's a bit like wanting to list all possible shapes for a brick, and finding 
an answer something like this :  

• Oblong blocks of size 1 , 2, 3, 4, . . .  

• Cubes of size 1 ,  2, 3, 4, . . .  

• Slabs of size 1 , 2, 3, 4, . . .  

• Pyramids of size 1 , 2, 3, 4, . . .  
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Which would be  very neat and tidy, except that the list continues: 

• A tetrahedron of size 1 4. 

• An octahedron of size 52. 

• A dodecahedron of size 78. 

• A dodecahedron of size 1 33 .  

• A dodecahedron of size 248. 

And that's it, there's nothing else. 
Why do bricks with these strange shapes and sizes exist? What are they 

for? 
It seemed completely mad. 
It seemed so mad, in fact, that Killing was rather upset that the excep­

tional groups existed, and for a time he hoped they were a mistake that he 
could eradicate. They spoiled the elegance of his classification. But they 
were there, and we are finally beginning to understand why they are there. 
In many ways, the five exceptional Lie groups now look much more inter­
esting than the four infinite families. They seem to be important in particle 
physics, as we will see; they are definitely important in mathematics. And 
they have a secret unity, not yet fully uncovered, relating them all to 
Hamilton's quaternions and an even more curious generalization, the oc­
tonions. Of which more, in due course. 

It's a wonderful series of ideas, and Killing had all of them. To be sure, 
his work included a few mistakes-some proofs that didn't quite work. 
But the mistakes were all repaired long ago. 

That is how the greatest mathematical paper of all time went. What did 
Killing's contemporaries think of it? 

Not a lot. It didn't help that Lie poured derision on Killing's magnum 
opus. He had fallen out with Killing for unknown reasons, and as far as he 
was concerned, Killing would never do anything important. Worse, of 
course, this was a theorem that Lie himself would have dearly loved to 
prove. Having been beaten to the punch, he resorted to the age-old tech­
nique of sour grapes. Anything in the area not done by Lie, said Lie, was 
rubbish. Though he wasn't quite that blatant. 
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It helped even less that Killing underestimated the value o f  his own 
theorem. To him it was a pale shadow of something far more important, 
which he had failed to achieve: classifying all Lie groups. Killing was a 
modest man, and Lie did his best to make him more so. 

In any case, Killing was ahead of his time. Very few mathematicians 
saw how important Lie theory was going to become. To most, it was a 
rather technical branch of geometry associated with differential equations. 

Finally, Killing was a staunch Catholic with a strong sense of duty and 
humility. He took St. Francis of Assisi as his model, and at the age of 39 
he and his wife entered the Third Order of the Franciscans. He seems to 
have been a thoroughly decent man who worked tirelessly on behalf of 
his students. He was a conservative and a patriot, greatly saddened by the 
extreme social dissolution of Germany after World War I. His feelings 
were made worse by the deaths of his two sons in 1 9 1 0  and 1 9 1 8. 

The true worth of Killing's researches became apparent in 1 894, when 
Elie Cartan rederived the whole theory in his PhD thesis, and took it a big 
step further by classifying not just the simple Lie algebras but their repre­
sentations in terms of matrices. Cartan was scrupulous in giving credit to 
Killing for nearly all of the ideas ; he just tidied everything up, plugged a 
few gaps (some serious) ,  and modernized the terminology. But a myth 
quickly grew up to the effect that Killing's work was riddled with holes and 
the real credit should go to Cartan. Mathematicians are seldom good his­
torians, and they tend to cite work that they know rather than the earlier 
work that led up to it. So Cartan's name became attached to many of 
Killing's ideas. 

Anyone who reads Killing's papers quickly discovers that the myth is 
just that. The ideas are clear and well formed, the proofs are perhaps old­
fashioned but nearly all correct. Most importantly, the overall sweep of 
the ideas is beautifully chosen to produce the desired result. It is mathe­
matics of the highest order, and it is not anyone else's. 

Unfortunately, hardly anyone read Killing's papers. They read Cartan 
and ignored the credit he gave to Killing. But eventually, Killing's work be­
gan to achieve proper recognition. In 1 900 he won the Lobachevsky Prize 
of the Kazan Physico-Mathematical Society. This was the second time the 
prize had been awarded: the first one went to Lie. 

Killing died in 1 923. Even today, his name is not as well known as it de­
serves to be. He was one of the greatest mathematicians who ever lived. 
His legacy, at least, is immortal. 
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8 y the beginning of the twentieth century, groups were starting to 
show up in fundamental physics, a field they would transform just as 
radically as they had transformed mathematics. 

In the golden year of 1 905, the man who would become the most 
iconic scientist of his time published three papers, each of which revolu­
tionized a separate branch of physics. He was not at that time a profes­
sional scientist. He had studied at university but had not been able to obtain 
a teaching position and was working as a clerical official in the patent office 
in Bern, Switzerland. His name, of course, was Albert Einstein. 

If any one person can symbolize modem physics, it is Einstein. To 
many, he also symbolizes mathematical genius, but in fact he was merely a 
competent mathematician, not a creative one on the level of Galois or 
Killing. Einstein's creativity lay not in producing new mathematics but in 
an extraordinarily rigorous intuition about the physical world, which he 
was able to express through remarkable uses of existing mathematics. 
Einstein also had a flair for the right philosophical standpoint. He drew 
radical theories from the simplest of principles and was guided by a sense 
of elegance rather than a wide knowledge of experimental facts. The im­
portant observations, he believed, could always be distilled into a few key 
principles. The gateway to truth was beauty. 

Acres of print and many lifetimes of scholarly study have been devoted 
to Einstein's life and works. A single chapter cannot hope to compete in 
either completeness or erudition. But he is a key figure in the history of 
symmetry: it was Einstein, above all others, who set in motion the web of 
events that turned the mathematics of symmetry into fundamental 
physics. I don't think Einstein saw it that way: to him, the mathematics 

1 7 3 
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was a servant of  physics--often a rather disobedient one. Only later, fol­
lowing the trail that Einstein had blazed and tidying up the tangled, bro­
ken vegetation that his pioneering efforts had strewn across the path, did 
another generation uncover the elegant and deep mathematical concepts 
upon which his work was based. 

So we must retell the main outlines of the astonishing rise to fame of 
this minor patent clerk-technical expert third class, to be precise, and on 
a trial basis at that. Since he is but one part of our story, I will select only 
the relevant events. If you who want a more comprehensive, unbiased as­
sessment of Einstein's career, you should read Abraham Pais's Subtle Is the 
Lord. 

Subtle, yes-but not, as Einstein once remarked, malicious. 
Einstein, who had little interest in religion, devoted his life to the prin­

ciple that the universe is comprehensible and that it runs along mathemat­
ical lines. Many of his most famous sayings invoke the deity, but as a 
symbol of the orderliness of the universe, not as a supernatural being with 
a personal interest in human affairs. He worshipped no god and practiced 
no religious rituals. 

.
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Einstein is generally seen as the natural successor to Newton. Earlier sci­
entists had made additions to Newton's "system of the world," as his 
Mathematical Principles of Natural Philosophy was subtitled, but Einstein 
was the first to make significant changes to that vision. The most impor­
tant of the earlier theorists was James Clerk Maxwell, whose equations for 
electromagnetism brought magnetic and electric phenomena, especially 
light, within the Newtonian purview. Einstein went much further, making 
major changes. Ironically, the changes that led to a revised theory of grav­
ity came about as consequences of the Maxwellian theory of electromag­
netic waves-light and its relatives. Even more ironically, a fundamental 
feature of that theory, the wave nature of light, played a key role, yet New­
ton denied that light could be a wave. To cap it all, one of the most elegant 
experiments now used to demonstrate that light is a wave was first carried 
out by Newton. 

Scientific interest in light goes back at least to Aristotle, who, though 
really a philosopher, asked the kind of question that scientists would find 
natural. How do we see? Aristotle suggested that when we look at some ob­
ject, that object affects the medium between itself and the onlooking eye. 
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(We now call this medium "air.") The eye then detects this change in the 
medium, and the result is the sensation of sight. 

In medieval times this explanation was reversed. It was thought that our 
eyes emitted some kind of ray, which illuminated whatever we looked at. 
Instead of the object transmitting signals to the eye, the eye left eye-tracks 
all over the object. 

Eventually, it was understood that we see objects by means of reflected 
light, and that in daily life the main source of light is the Sun. Experiments 
showed that light travels in straight lines, forming "rays." Reflection oc­
curs when a ray bounces off a suitable surface. So the Sun sends light rays 
to everything that is not shadowed by something else, the rays bounce all 
over the place, some enter an observer's eye, the eye receives a signal from 
that direction, the brain processes the incoming information from the eye, 
and we see whatever object the ray bounced off. 

The main question was, what is light? Light does a number of puzzling 
things. Not only does it reflect; it can also refract-change direction 
abruptly at the interface between two different media, such as air and wa­
ter. This is why a stick poked into a pond looks bent, and also why lenses 
work. 

Even more puzzling is the phenomenon of diffraction. In 1 664, the 
scientist and polymath Robert Hooke, whose career repeatedly clashed 
with Newton's, discovered that if he placed a lens on top of a flat mirror 
and then looked through the lens, he saw tiny concentric colored rings. 
These rings are now known as "Newton's rings" because Newton was the 
first person to analyze their formation. Today we consider this experiment 
a clear demonstration that light is a wave : the rings are interference 
fringes, where waves do or do not cancel each other out when they over­
lap. But Newton didn't believe light was a wave. Because light traveled in 
straight lines, he believed it had to be a stream of particles. According to 
his Opticks, completed in 1 705, "Light is composed of tiny particles, or 
corpuscles, emitted by luminous bodies." The particle theory could ex­
plain reflection very simply: the particles bounced when they hit a (reflect­
ing) surface. It encountered difficulties explaining refraction, and pretty 
much fell apart when it came to diffraction. 

Thinking about what could cause light rays to bend, Newton decided 
that the medium, not light, must be the root cause. This led him to suggest 
the existence of some "aethereal medium" which transmitted vibrations 
Jaster than light. He convinced himself that radiant heat was evidence in 
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favor of these vibrations, because he  had established that heat radiation 
could traverse a vacuum. Something in the vacuum must be carrying the 
heat and causing refraction and diffraction. In Newton's words :  

Is not the Heat of the warm Room convey'd through the Vacuum by 
the Vibrations of a much subtiler Medium than Air, which after the 
Air was drawn out remained in the Vacuum? And is not this Medium 
the same with that Medium by which Light is refracted and reflected, 
and by whose Vibrations Light communicates Heat to Bodies, and is 
put into Fits of easy Reflexion and easy Transmission? 

When I read these words I cannot help thinking of my friend Terry 
Pratchett, whose series of fantasy novels set on "Discworld" satirize our 
own world, and whose assorted wizards, witches, trolls, dwarves, and peo­
ple poke fun at human foibles. Light on Discworld travels at roughly the 
speed of sound, which is why the light of dawn can be seen approaching 
across the fields. A necessary counterpart to light is dark-on Discworld 
almost everything is reified-and dark evidently travels faster than light 
because it has to get out of light's way. It all makes excellent sense, even in 
our world, aside from the disappointing fact that none of it is true. 

Newton's theory of light suffers from the same defect. Newton wasn't 
being s tupid: his theory seemed to answer a number of important ques­
tions. Unfortunately, these answers were based on a fundamental misun­
derstanding: he thought radiant heat and light were two different things. 
He believed that when light hits a surface, it excites heat vibrations. These 
were variants of the same vibrations that he thought caused light to re­
fract and diffract. 

Thus was born the concept of the "luminiferous aether," which proved 
remarkably persistent. Indeed, when it later turned out that light is a wave, 
the aether provided just the right medium for it to be a wave in. (We now 
think that light is neither wave nor particle exclusively but a bit of both­
a wavicle. But I'm getting ahead of myself.) 

What, though, was the aether? Newton is perfectly frank: "I do not 
know what this Aether is." He argued that if the aether is also composed 
of particles, then they must be much smaller and lighter than particles of 
air or even of light--essentially for the Discworldly reason that they have 
to be able to get out of light's way. "The exceeding smallness of its Parti­
cles," Newton says of the aether, "may contribute to the greatness of the 
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force by which those Particles may recede from one another, and thereby 
make that Medium exceedingly more rare and elastick than Air, and by 
consequence exceedingly less able to resist the motions of Projectiles, and 
exceedingly more able to press upon gross Bodies, by endeavoring to ex­
pand itself." 

Earlier, in his 1 678 Treatise on Light, the Dutch physicist Christiaan 
Huygens had proposed a different theory: light is a wave. This theory 
neatly explains reflection, refraction, and diffraction-similar effects can 
be seen, for instance, in water waves. The aether was to light as water was 
to waves on the ocean-the thing that moved when the wave passed. But 
now Newton disagreed. The debate got very confused, because both sci­
entists were making incorrect assumptions about the nature of the alleged 
waves. 

Everything changed when Maxwell got in on the act. And he stood on 
the shoulders of another giant. 

..�!.:;:., ...
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Electric heating, lighting, radio, television, food processors, microwave 
ovens, refrigerators, vacuum cleaners, and endless  items of industrial ma­
chinery all derive from the insights of one man, Michael Faraday. Faraday 
was born in Newington Butts, London {now the Elephant and Castle} , in 
1 79 1 .  He was a blacksmith's son who rose to scientific eminence in the 
Victorian era. His father belonged to the Sandemanians, a minority Chris­
tian sect. 

Faraday became an apprentice bookbinder in 1 805 and began perform­
ing scientific experiments, especially in chemistry. His interest in science 
grew significantly when, in 1 8 1 0, he became a member of the City Philo­
sophical Society, a group of young people who met to talk science. In 
1 81 2, he was given tickets to hear the final lectures of Sir Humphry Davy, 
Britain's leading chemist, at the Royal Institution. Soon thereafter, he 
asked Davy for a job; he was given an interview, but no position was avail­
able. But after Davy's chemical assistant was soon fired for starting a fight, 
Faraday got his job. 

From 1 8 1 3  to 1 8 1 5  Faraday toured Europe with Davy and his wife. 
Napoleon had given Davy a passport, which included a valet, so Faraday 
accepted that position. He was annoyed to find that Davy's wife, Jane, 
took the title literally and expected him to act as her servant. In 1 821 , 
events took a more favorable turn: he was promoted, and he married 
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Sarah Barnard, the daughter of  a prominent Sandemanian. Better still, his 
research into electricity and magnetism was starting to take off. Following 
previous research of the Danish scientist Hans 0rsted, Faraday discov­
ered that electricity flowing through a coil near a magnet produces a force. 
This is the basic principle underlying the electric motor. 

His research interests then became swamped under administrative and 
teaching duties, though these had a very favorable impact. In 1 826, he 
started a series of evening discourses on science and also initiated the 
Christmas lectures for young people, both of which are still running. To­
day the Christmas lectures are broadcast on television, one of the gadgets 
that Faraday's discoveries eventually made possible. In 1 83 1 ,  back at his 
experiments, he discovered electromagnetic induction. This was the dis­
covery that changed the industrial face of the nineteenth century, because 
it led to electrical transformers and generators. The experiments con­
vinced him that electricity must be some kind of force acting between ma­
terial particles, and not a fluid as generally thought. 

Eminence in science typically leads to the honor of an administrative 
post, which promptly kills off the scientific activities that are being recog­
nized. Faraday was made scientific adviser to Trinity House, whose mis­
sion is to keep the British seaways safe for shipping. He invented a new, 
more efficient kind of oil-burning lamp, which produced a brighter light. 
By 1 840, he had become an elder of the Sandemanian sect, but his health 
was starting to worsen. In 1 858 he was given free lodgings in a "grace and 
favor" house at Hampton Court, the former palace of King Henry VIII. 
He died in 1 867 and was buried in Highgate Cemetery . 
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Faraday's inventions revolutionized the Victorian world, but (perhaps be­
cause of his early lack of education) he was weak on theory, and his expla­
nations of how his inventions worked were based on curious mechanical 
analogies. In 1 83 1 ,  the year Faraday discovered how to turn magnetism 
into electricity, a Scottish lawyer was presented with a son-his only child, 
as it turned out. The lawyer was more interested in managing his land 
holdings, but he took considerable interes t  in the education of young 
''Jamesie,'' more formally known as James Clerk Maxwell. 

Jamesie was bright and fascinated by machines. "How it doos?" was his 
standard question: How does it do that? Another was "What's the go of 
that?" His father, who had similar fascinations, did his best to explain. 
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And if the father failed to go far enough, Jamesie would ask a supplemen­
tary question: ' 'What's the particular go of that?" 

James's mother died of cancer when the child was nine; the loss 
brought father and son closer together. The boy was sent to the Edin­
burgh Academy, which specialized in the classics and wanted its pupils to 
be neat and tidy, proficient in the standard subjects, and totally lacking in 
original thought because that got in the way of orderly teaching. Jamesie 
wasn't quite what the schoolteachers wanted, and it did not help that his 
father, obsessed with cleanliness, had designed special clothes and shoes 
for the boy, including a frilly tunic bedecked with lace. The other kids 
nicknamed James "Dafty." But James was stubborn and earned their re­
spect, though he still baffled them. 

The school did one good thing for James : it gave him an interest in 
mathematics. A letter to his father talks of making "a tetra hedron, a do­
deca hedron, and two more hedrons that I don't know the wright names 
for." (Presumably these were the octa and icosa.) By the age of 14 he had 
won a prize for independently inventing a class of mathematical curves 
known as Cartesian ovals, after its original inventor Descartes. His paper 
was read to the Royal Society of Edinburgh. 

James also wrote poetry, but his mathematical talents were greater. He 
started at the University of Edinburgh at 16 and later continued his s tud­
ies at the University of Cambridge, Britain's leading institution for mathe­
matics. William Hopkins, who coached him for his exams, said that James 
was "the most extraordinary man I have ever met." 

James earned his degree and remained at Cambridge as a postgraduate 
student, doing experiments on light. Then he read Faraday's Experimental 
Researches and started studying electricity. To cut a long story very short, 
he took Faraday's mechanical models of electromagnetic phenomena and 
by 1 864 had distilled them into a system of four mathematical laws. (In 
the notation of the day there were more than four, but we now use vector 
notation to group them into four. Some formalisms reduce these down to 
one.) The laws describe electricity and magnetism in terms of two 
"fields," one electric and one magnetic, which pervade the whole of space. 
These fields describe not just the strength of electricity or magnetism at 
each location but the direction as well. 

The four equations have simple physical meanings. Two tell us that elec­
tricity and magnetism can be neither created nor destroyed. The third de­
scribes how a time-varying magnetic field affects the surrounding electric 
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field, and i t  embodies in  mathematical form Faraday's discovery of  induc­
tion. The fourth describes how a time-varying electric field affects the sur­
rounding magnetic field. Even in words, these equations are elegant. 

A simple mathematical manipulation of Maxwell's four equations con­
firmed something that Maxwell had long suspected: light is an electromag­
netic wave, a propagating disturbance in the electric and magnetic fields. 

The mathematical reason was that from Maxwell's equations it is easy 
to derive something that all mathematicians could recognize: the "wave 
equation," which as its name suggests describes how waves propagate. 
Maxwell's equations also predict the speed of such waves :  they must travel 
at the speed of light. 

Only one thing travels at the speed of light. 
In those days it was assumed that waves had to be waves in something. 

There had to be a medium to transmit them; waves were vibrations of that 
medium. The obvious medium for light waves was the aether. The mathe­
matics said that light waves had to vibrate at right angles to the direction 
of travel. This explained why Newton and Huygens had been so con­
fused: they thought the waves vibrated along the direction of travel. 

The theory made another prediction: that the "wavelength" of electro­
magnetic radiation, the distance from one wave to the next, could be any­
thing. The wavelength of light is extremely short, but there ought to exist 
electromagnetic waves of much greater length. It was a good enough theory 
to inspire Heinrich Hertz to generate such waves, which we now call radio 
waves. Guglielmo Marconi quickly followed up with a practical transmitter 
and receiver, and suddenly we could talk to each other, almost instantly, 
across the entire planet. Now we send pictures the same way, monitor the 
skies with radar, and navigate with the Global Positioning System. 

Unfortunately, the concept of the aether was problematic. If the aether 
existed, then the Earth, which revolves round the Sun, must be moving 
with respect to the aether. It ought to be possible to detect that motion­
or else the very concept of the aether would have to be abandoned as in­
consistent with experiment. 

The answer to this conundrum would completely change the face of 
physics. 

In the summer of 1 876, the firm of Israel and Levi, run by two Jewish 
merchants in the city of Ulm in the state of Wiirttemberg, gained a new 
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partner, Hermann Einstein. In his youth, Hermann had shown consider­
able ability in mathematics, but his parents could not afford to send him to 
university. Now he was becoming a partner in a firm that sold featherbeds. 

In August, Hermann married Pauline Koch in Cannstadt synagogue, 
and the couple eventually made a home in Bahnhofstrasse-Station Road. 
Less than eight months later, their first child was born. According to the 
birth certificate, "A child of the male sex, who has received the name Al­
bert, was born in VIm, in [Hermann's] residence, to his wife Pauline Ein­
stein, nee Koch, of the Israelitic faith." Five years later, Albert was 
presented with a sister, Maria, and the two became very close. 

Albert's parents had a relaxed attitude to their religion and made ef­
forts to integrate themselves into the regional culture. At that time, many 
German Jews were "assimilationist," toning down their cultural traditions 
so that they would fit in better with fellow citizens of other faiths. The 
names that Hermann and Pauline chose for their children were not tradi­
tional Jewish names, although they maintained that Albert was named 
"after" his grandfather Abraham. Religion was not a frequent topic of 
discussion in Hermann's house, and the Einsteins did not observe tradi­
tional Jewish rituals. 

Maria's childhood recollections, published in 1 924, are our main source 
of information about Albert's early experiences and personality. Appar­
ently, he frightened his mother at birth because the back of his head was 
strangely angular and unusually large. "Much too heavy! Much too heavy!" 
she cried, when she first saw her baby. Fears that the boy would turn out 
to be mentally handicapped grew when it took him a long time to start to 
speak. But Albert was merely waiting until he was confident that he knew 
what he was doing. He later said that he only began to talk when he could 
master complete sentences. He would try them out in his head, and then 
utter them once he was sure the words were correct. 

Albert's mother was an accomplished piano player. Between the ages of 
six and thirteen, Albert was given violin lessons from a teacher named 
Schmied. In later life, he was devoted to his violin, but in childhood he 
found the lessons boring. 

The featherbed business having flopped, Hermann turned his hand to 
gas and water supplies, in collaboration with his brother Jakob. Jakob was 
an engineer and an entrepreneur, and the Einsteins invested heavily in the 
new venture. Then Jakob decided to diversify into electricity-not in­
stalling utilities but manufacturing equipment for power stations. The 
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company officially came into being in  1 885, and the two brothers moved 
into the same house in Munich, with financial help from Pauline's father 
and other family members. At first, the business did well, and the Elektro­
nische Fabrik J. Einstein und Co. sold power stations in the Munich area 
and as far afield as Italy. 

Einstein tells us that his interest in physics was triggered when his fa­
ther showed him a compass. Then aged four or five, Albert was fascinated 
by its ability to point in the same direction no matter how it was turned, 
and he gained his first glimpse of the hidden wonders of the physical uni­
verse. He found the experience almost mystical. 

At school, Albert was competent but initially showed no special bril­
liance. He was slow and methodical, received good grades, but was a poor 
mixer. He much preferred to play on his own; he was particularly fond of 
building houses of cards. He disliked sports. When he moved to the gym­
nasium in 1 888 he developed a talent for Latin, and until he left at fifteen 
he always was at the top of his class in Latin and mathematics. His mathe­
matical abilities were stimulated by Uncle Jakob, who as an engineer would 
have studied quite a bit of higher mathematics. Jakob would set young Al­
bert mathematical problems, and Albert was delighted when he solved 
them. A family friend, Max Talmud, also had a significant effect on Al­
bert's education. Talmud was a poverty-stricken medical student, and Her­
mann and Pauline had him over for dinner every Thursday evening. He 
gave Albert several books on popular science; then he initiated the young 
man into the philosophical writings of Immanuel Kant. The two would 
discuss philosophy and mathematics for hours. Talmud wrote that he 
never saw Einstein playing with other children, and that his reading mate­
rial was always serious, nothing lightweight. His sole relaxation was to play 
music, including Beethoven and Mozart sonatas accompanied by Pauline. 

Albert's enthusiasm for mathematics received a boost in 1 89 1  when he 
acquired a copy of Euclid that he later called his "holy geometry book." 
What impressed him most was the clarity of the logic, the way Euclid had 
organized the flow of ideas. For a time, Albert became very devout, 
thanks to compulsory school instruction (in Catholicism, as it hap­
pened-there was no choice) and home tuition in the Jewish faith. But all 
this was brushed aside when he found out about science. His studies of 
Hebrew and his progress towards his bar mitzvah ground abruptly to a 
halt; Albert had found a different calling. 

"�l� 
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By the early 1 890s, all was not well in the Elektronische Fabrik J. Einstein 
und Co. Sales were becoming more difficult in Germany, and the com­
pany's Italian agent Lorenzo Garrone suggested that it should move to 
Italy. In June 1 894, the German company was wound up, the family home 
went on the market, and the Einsteins moved to Milan-with the sole ex­
ception of Albert, who had his schooling to complete. While "Einstein 
and Garrone" set up shop in Pavia, where the family subsequently moved, 
Albert was left on his own in Munich. 

It was a depressing experience, and he hated it. Not only that: the 
prospect of military service was looming. Without telling his parents, he 
decided to join them in Italy. He persuaded the family doctor to provide a 
certificate stating that he suffered from nervous disorders, which may well 
have been true; permitted to leave school early, he turned up unan­
nounced in Pavia in the spring of 1 895. His parents were horrified, so he 
promised to continue his s tudies so that he could take the entrance exami­
nation to ETH (the Eidgenossische Technische Hochschule, then as now 
a leading Swiss institution of higher education) in Zurich. 

Albert blossomed in the Italian sunshine. In October he took the ETH 
entrance examination and failed. He passed easily in mathematics and sci­
ence but fell down on the humanities. His essay writing was none too 
good either. But it turned out that there was another way into ETH, which 
was to start by gaining a high-school diploma, the Matura, which was an 
automatic entry route. He therefore went to a school in Aarau as a paying 
guest of the Winteler family. The Wintelers had seven children, and Albert 
enjoyed their company, developing a lasting affection for his substi tute 
parents. He praised the school's "liberal spirit" and excellent teachers­
saying pointedly that the teachers did not bow to outside authority. 

For the first time in his life, he was happy at school. He grew in confi­
dence and made his opinions known. One of his school essays, in French, 
laid out his plans for the future, which were to study mathematics and 
physics. 

In 1 896 he entered ETH, renouncing his Wiirttemberg citizenship and 
becoming stateless. He saved one-fifth of his monthly allowance to pay 
for his eventual Swiss naturalization. But now the electrical factory owned 
by his father and uncle Jakob went bankrupt, taking much of the family 
fortune with it. Jakob took a regular job with a big company, but Hermann 
was determined to start yet another business. He ignored Albert's advice 
to the contrary, started again in Milan, and lasted only two years before 
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that enterprise, too, failed. Albert once more became depressed by his 
family's misfortunes, until his father followed Jakob's lead and took a job 
installing power stations. 

Albert spent much of his time at ETH in the physics laboratory, per­
forming experiments. His professor, Heinrich Friedrich Weber, was unim­
pressed. "You are a smart boy, Einstein, a very smart boy," he told the 
young man. "But you have one great fault: you do not let yourself be told 
anything." He stopped Albert from carrying out an experiment to find out 
whether the Earth was moving relative to the aether-the hypothetical all­
pervading fluid that was supposed to transmit electromagnetic waves. 

Nor was Einstein greatly impressed by Weber, whose courses he found 
old-fashioned. He was especially disappointed not to be told more about 
Maxwell's theory of electromagnetism and taught it to himself, using a 
German text of 1 894. He took lecture courses from two famous mathe­
maticians, Hurwitz and Hermann Minkowski . Minkowski, a brilliantly 
original thinker, had introduced fundamental new methods into the the­
ory of numbers, and was later to make important mathematical contribu­
tions to relativity. Albert also read some of Charles Darwin's works on 
evolution. 

In order to proceed at ETH, he now needed to land an assistant­
ship-what we would now call a teaching assistant position-so that he 
could finance his further studies while remaining at ETH. Weber hinted 
that he might offer Albert such a post, but failed to follow through, and 
Albert never entirely forgave him. He wrote a letter to Hurwitz inquiring 
whether such a post might be available, and apparently received a posi­
tive reply, but again nothing happened. By the end of 1 900 he was un­
employed.  He did, however, publi sh his first research paper, on the 
forces acting between molecules. Soon thereafter, he attained Swiss citi­
zenship, which he kept for the rest of his life, even after moving to the 
United States. 

Throughout 1 90 1 , Albert kept trying to obtain a university position, 
writing letters, sending out copies of his paper, applying for any position 
that was open. No luck. In desperation he took a job as a temporary high­
school teacher. To his surprise, he discovered that he enjoyed teaching; in 
addition, it left him ample spare time to continue his research into physics. 
He told his friend Marcel Grossmann that he was working on the theory 
of gases, and-once again-the motion of matter through the aether. He 
moved to another temporary teaching post in another school. 
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Now Grossmann came to Albert's rescue: Marcel's father was per­
suaded to recommend Albert to the director of the Federal Patent Office 
in Bern. When the job was officially advertised, Einstein applied. He re­
signed from school teaching and moved to Bern early in 1 902, although he 
had not yet been told officially that he had secured the post. Perhaps he 
had been assured of this informally, or perhaps he was just very confident. 
The appointment was made official in June 1 902. It was not the academic 
position that he coveted, but it earned enough money-3500 Swiss francs 
a year-to provide food, clothes, and lodging. And it left enough time for 
physics. 

At ETH he had encountered a young student named Mileva Maric, who 
had a strong interest in science-and in Albert. They fell in love. Unfortu­
nately, Pauline Einstein disliked her prospective daughter-in-law, and this 
caused ill feeling. Then Hermann developed terminal heart disease. On his 
deathbed the father finally agreed to allow Albert and Mileva to marry, but 
then he asked everyone in the family to leave him, so that he could die 
alone. Albert felt guilty for the rest of his life. He and Mileva were married 
in January 1 903; their only son, Hans Albert, was born in May 1 904. 

The patent office job suited Einstein, and he carried out his duties so 
effectively that toward the end of 1 904 his job was made permanent-but 
his boss warned that further promotion would depend on Einstein com­
ing to grips with machine technology. His physics advanced too, with 
work on statistical mechanics. 

All of which led up to the "golden year" of 1 905, when the patent of­
fice clerk wrote a paper that eventually earned him the Nobel Prize. In the 
same year he obtained his PhD from the University of Zurich. He was 
also promoted to technical expert second class, with a raise of 1 000 Swiss 
francs per year-it seems he had managed to master machine technology. 

Even after he became famous, Albert always gave credit to Grossmann 
for paving the way to the job at the patent office. It was this, more than 
anything else, said Einstein, that had made his work in physics possible. It 
had been a stroke of genius, the perfect job, and he never forgot that . 
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In that most remarkable year in the history of physics, Einstein published 
three major research papers. 

One was on Brownian motion, the random movements of very tiny par­
ticles suspended in a fluid. This phenomenon is named after its discoverer, 
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the botanist Robert Brown. In  1 827, he  was looking through his micro­
scope at grains of pollen floating in water. Inside holes in the pollen he no­
ticed even tinier particles j iggling about at random. The mathematics of 
this kind of motion was worked out by Thorvald Thiele in 1 880, and inde­
pendently by Louis Bachelier in 1 900. Bachelier's inspiration was not 
Brownian motion as such, but the equally random fluctuations of the stock 
market-the mathematics proved identical. 

The physical explanation was still up for grabs. Einstein, and independ­
ently the Polish scientist Marian Smoluchowski, realized that Brownian 
motion might be evidence for the then-unproved theory that matter was 
made of atoms, which combined to form molecules. According to the so­
called "kinetic theory," molecules in gases and liquids are constantly 
bouncing off each other, effectively moving at random. Einstein worked 
out enough of the mathematics of such a process to show that it matched 
the experimental observations of Brownian motion. 

The second paper was on the photoelectric effect. Alexandre Bec­
querel, Willoughby Smith, Heinrich Hertz, and several others had ob­
served that certain types of metal produce an electric current when 
exposed to light. Einstein started from the quantum-mechanical proposal 
that light is composed of tiny particles. His calculations showed that this 
assumption gives a very good fit to the experimental data. It was one of 
the first strong pieces of evidence in favor of quantum theory. 

Either of these articles would have been a major breakthrough. But the 
third outclassed them all. It was on special relativity, the theory that went 
beyond Newton to revolutionize our views of space, time, and matter. 

Our everyday view of space is the same as Euclid's and Newton's. Space 
has three dimensions, three independent directions at right angles to each 
other like the corner of a building-north, east, and up. The structure of 
space is the same at all points, though the matter that occupies space may 
vary. Objects in space can be moved in different ways: they can be rotated, 
reflected as if in a mirror, or "translated"-slid sideways without rotating. 
More abstractly, we can think of these transformations being applied to 
space itself (a change of the "frame of reference") . The structure of 
space, and the physical laws that express that structure and operate within 
it, are symmetric under these transformations. That is, the laws of physics 
are the same in all locations and at all times. 
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In a Newtonian view of physics, time forms another "dimension" that 
is independent of those of space. Time has a single dimension, and its 
symmetry transformations are simpler. It can be translated (add a fixed 
period of time to every observation) or reflected (run time in reverse-as 
a thought-experiment only) . The physical laws do not depend on the start­
ing date for your measurements, so they should be symmetric under trans­
lations of time. Most fundamental physical laws are also symmetric under 
time reversal, though not all, a fact that is rather mysterious. 

But when mathematicians and physicis ts s tarted to think about the 
newly discovered laws of electricity and magnetism, the Newtonian view 
seemed not to fit. The transformations of space and time that left the laws 
unchanged were not the simple "motions" of translation, rotation, and re­
flection; moreover, those transformations could not be applied to space or 
time independently. If you made a change in space alone, the equations 
got messed up. You had to change time in a compensating way. 

To some extent this problem could be ignored, as long as the system 
under study was not moving. But the problem came to a head with the 
mathematics of a moving electric particle such as an electron-and this 
problem was central to the physics of the late nineteenth century. The as­
sociated worries about symmetry could no longer be ignored. 

In the years leading up to 1 905, a number of physicists and mathemati­
cians had been puzzling about this strange feature of Maxwell's equations. 
If you performed an experiment involving electricity and magnetism in a 
laboratory or on a moving train, how should the results compare? 

Of course, few experimentalists work on moving trains, but they all 
work on a moving Earth. For many purposes, though, the Earth can be 
considered to be at rest, because the experimental apparatus moves along 
with it, so the motion makes no real difference. Newton's laws of motion, 
for example, remain exactly the same in any "inertial" frame of reference, 
one that is moving with constant speed in a straight line. The Earth's 
speed is fairly constant, but it spins on its axis and revolves around the 
Sun, so the motion relative to the Sun is not straight. Still, the path the ap­
paratus follows is almost straight; whether the curvature matters depends 
on the experiment, and often it does not matter at all. 

No one would have been worried if Maxwell's equations had to take a 
different form in a rotating frame. What they discovered was more dis­
turbing: Maxwell's equations took a different form in an inertial frame. 
Electromagnetism on a moving train is different from electromagnetism 
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i n  a fixed laboratory, even when the train i s  traveling in  a straight line at 
constant speed. 

There was a further complication: it is all very well to say that a train, or 
the Earth, is moving, but the concept of motion is relative. Mostly we 
don't notice the movement of the Earth, for example. The Sun's rising in 
the morning and setting in the evening is explained by the Earth's rotation. 
But we don't feel the rotation, we deduce it. 

If you sit in a train and look out of the window, you may get the im­
pression that you are fixed and the countryside is rushing past you. Some­
one standing in a field watching you go past observes the opposite: she is 
s tationary and the train is moving. When we say that the Earth goes 
around the Sun rather than the Sun going around the Earth, we are mak­
ing a subtle distinction, because either description is valid, depending on 
which frame of reference you choose. If the frame is carried along with 
the Sun, then the Earth moves relative to that frame and the Sun does not. 
But if the frame is carried along with the Earth, as the planet's inhabitants 
are, then the Sun is the object that moves. 

So what was all the fuss about the heliocentric theory, which holds that 
the Earth orbits the Sun, not the other way around? Poor Giordano 
Bruno was burnt to death because he said that one description was correct 
while the Church preferred the other one. Did he die because of a misun­
derstanding? 

Not exactly. Bruno made a number of claims that the Church viewed 
as heresies-small matters like the nonexistence of God. His fate would 
have been much the same if he had never mentioned the heliocentric 
theory. But there is an important sense in which "the Earth goes around 
the Sun" is superior to "the Sun goes around the Earth." The important 
difference is that the mathematical description of the planets' move­
ments relative to the Sun is much simpler than that of their movements 
relative to the Earth. An Earth-centered theory is possible but very com­
plicated. Beauty is more significant than mere truth. Many points of 
view yield true descriptions of nature, but some provide more insight 
than others. 

Now, if all motion is relative, then nothing can be absolutely "at rest." 
Newtonian mechanics is consistent with the next-simplest proposal: that 
all inertial frames are on the same footing. But that is not true of 
Maxwell's equations. 
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As the nineteenth century drew to a close, one further intriguing possibil­
ity also had to be considered. Since light was believed to be a wave travel­
ing through the aether, then perhaps the aether was at rest. Instead of all 
motions being relative, some motions-those relative to the aether­
might be absolute. But that still did not explain why Maxwell's equations 
are not the same in all inertial frames. 

The common theme here is symmetry. Changing from one frame of 
reference to another is a symmetry operation on space-time. Inertial 
frames are about translational symmetries; rotating frames are about rota­
tional symmetries. Saying that Newton's laws are the same in any inertial 
frame is to say that those laws are symmetric under translations at uniform 
speed. For some reason, Maxwell's equations do not have this property. 
That seems to suggest that some inertial frames are more inertial than oth­
ers. And if any inertial frames are special, surely it should be those that are 
stationary relative to the aether. 

The upshot of these problems, then, was two questions, one physical, 
one mathematical. The physical one was, can motion relative to the aether 
be detected in experiments? The mathematical one was, what are the sym­
metries of Maxwell's equations? 

The answer to the first was found by Albert Michelson, a US Navy offi­
cer who was taking leave to study physics under Helmholtz, and the chemist 
Edward Morley. They built a sensitive device to measure tiny discrepancies 
in the speed of light moving in different directions, and concluded that 
there were no discrepancies. Either the Earth was at rest relative to the 
aether-which made little sense given that it was circling the Sun--or there 
was no aether, and light did not obey the usual rules for relative motion. 

Einstein attacked the problem from the mathematical direction. He 
didn't mention the Michelson-Morley experiment in his papers, though he 
later said he was aware of it and that it had influenced his thinking. Instead 
of appealing to experiments, he worked out some of the symmetries of 
Maxwell's equations, which have a novel feature: they mix up space and 
time. (Einstein did not make the role of symmetry explicit, but it is not far 
below the surface.) One implication of these weird symmetries is that uni­
form motion relative to the aether-assuming that such a medium ex­
ists-cannot be observed. 

Einstein's theory acquired the name "relativity," because it made unex­
pected predictions about relative motion and electromagnetism. 

··�l·.( 
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"Relativity" i s  a very bad name. It's misleading because the most signifi­
cant feature of Einstein's theory is that some things are not relative. 
Specifically, the speed of light is absolute. If you shine a beam of light 
past an observer standing in a field, and another one standing in a moving 
train, both will measure the same speed. 

This is distinctly counterintuitive, and at first sight it seems absurd. The 
speed of light is roughly 1 86,000 miles per second. Clearly this is what the 
observer in the field should measure. What about the person on the train? 

Suppose the train is traveling at 50 mph. First, imagine that there is a 
second train on a parallel line, also traveling at 50 mph. You look out of the 
window and watch it go past. How fast does it seem to you to be moving? 

If it is traveling in the same direction that you are, then the answer is 0 
mph. The second train will keep pace with yours, it will stay alongside it, 
and seem not to be moving relative to your train. If it is traveling the op­
posite way, then it will appear to flash past at 1 00 mph, because your train's 
50 mph is in effect added to the speed of the oncoming train. 

If you do the measurements with trains, that is what you find. 
Now replace the second train by a beam of light. The speed of light, 

converted to the appropriate units, is 670,61 6,629 miles per hour. If your 
train were moving away from the source of the light, you would expect to 
observe a speed of 670,6 1 6,629 - 50 = 670,61 6,579 mph, because the light 
would have to "catch up" with the train. On the other hand, if your train 
were moving toward the source of the light, then you would expect the 
speed of light relative to the train to be 670,61 6,629 + 50 = 670,61 6,679 
mph, because the movement of the train would add to the apparent 
speed. 

According to Einstein, both of those numbers are wrong. What you 
will observe, in either case, is light traveling at 670,61 6,629 mph--exactly 
the same speed that the woman in the field observes. 

This sounds mad. If the Newtonian rules for relative motion work for 
another train, why don't they work for light? Einstein's answer is that laws 
of physics are different from Newton's for objects that move very fast. 

More precisely, the laws of physics are different from Newton's, period. 
But the difference only becomes apparent when objects are moving at 
speeds very close to the speed of light. At low speeds like 50 mph, New­
ton's laws are such a good approximation to Einstein's proposed replace­
ments that you cannot notice any difference. But as speeds increase, 
discrepancies become large enough to be observed. 
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The basic physical point is that the symmetries of the Maxwell equa­
tions not only preserve the equations; they preserve the speed of light. In­
deed, the speed of light is built into the equations. So the speed of light 
must be absolute. 

It is ironic that this proposal should be called "relativity." Einstein actu­
ally wanted to name it "Invariantentheorie": invariant theory. But the 
name "relativity" stuck, and in any case there already existed an area of 
mathematics called invariant theory, so Einstein's preferred name might 
have been confusing. Though not half as confusing as using "relativity" to 
describe the invariance of the speed of light in all inertial frames. 

The consequences of "relativity" are bizarre. The speed of light is a limit­
ing speed. You can't travel faster than light, and you can't send messages 
faster than light. No Star wars hyperdrives. Near the speed of light, 
lengths shrink, time slows to a crawl, and mass increases without limit. 
But-and here's the wonderful thing-you don't notice, because your 
measuring instruments also shrink, slow down (in the sense that time 
passes more slowly) , or get heavier. This is why the observer in the field 
and the one on the train measure your light at the same speed despite their 
relative motion: the changes in length and time compensate exactly for the 
expected effects of the relative movement. This is why Michelson and 
Morley could not detect the Earth's motion relative to the aether. 

When you are moving, everything looks the same to you as it did when 
you weren't moving. The laws of physics cannot tell you whether you are 
moving or stationary. They can tell you whether you are accelerating, but 
not how fast you are going if your speed is constant. 

It may still seem weird, but experiments confirm the theory in exquisite 
detail. Another consequence is Einstein's famous formula E = me2, linking 
mass to energy, which indirectly led to the atomic bomb, though its role 
there is often exaggerated. 

Light is so familiar to us that we seldom think about how weird it is. It 
seems to weigh nothing, it penetrates everywhere, and its enables us to 
see. What is light? Electromagnetic waves. Waves in what? The space-time 
continuum, which is a fancy way of saying, "we don't knOw." Early in the 
twentieth century, the medium for the waves was thought to be the lu­
miniferous aether. After Einstein, we understood one thing about that 
aether: it doesn't exist. The waves are not in anything. 
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Quantum mechanics, a s  we will see, went further. Not only are light 
waves not in anything: all things are waves. In place of a medium to sup­
port the waves-a fabric of space-time that ripples as the waves pass­
the fabric itselfis made of waves. 

.:;;.!.�., 
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Einstein was not the only person to notice that the symmetries of space­
time, as revealed in Maxwell's equations, are not the obvious Newtonian 
symmetries. In a Newtonian view, space and time are separate and differ­
ent. Symmetries of the laws of physics are combinations of rigid motions 
of space and an independent shift in time. But as I mentioned, these 
transformations do not leave Maxwell's equations invariant. 

Pondering this, the mathematicians Henri Poincare and Hermann 
Minkowski were led to a new view of the symmetries of space and time, 
on a purely mathematical level. If they had described these symmetries in 
physical terms, they would have beaten Einstein to relativity, but they 
avoided physical speculations. They did understand that symmetries of 
the laws of electromagnetism do not affect space and time independently 
but mix them up. The mathematical scheme describing these intertwined 
changes is known as the Lorentz group, after the physicist Hendrik 
Lorentz. 

Minkowski and Poincare viewed the Lorentz group as an abstract ex­
pression of certain features of the laws of physics, and descriptions like 
"time passing more slowly" or "objects shrinking as they speed up" were 
thought of as vague analogies rather than anything real. But Einstein in­
sisted that these transformations have a genuine physical meaning. Ob­
j ects, and time, really do behave like that. He was led to formulate a 
physical theory, special relativity, that incorporated the mathematical 
scheme of the Lorentz group into a physical description not of space and 
a separate time, but of a unified space-time. 

Minkowski came up with a geometric picture for this non-Newtonian 
physics, now called Minkowski space-time. It represents space and time as 
independent coordinates, and a moving particle traces out a curve-which 
Einstein called its world line-as time passes. Because no particle can 
travel faster than light, the slope of the world line can never get more than 
45° away from the time direction. The particle'S past and future always lie 
inside a double cone, its light cone. 
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Geometry of Minkowski space-time. 

That took care of electricity and magnetism, two basic forces of nature. 

But one basic force was still missing from this description: gravity. At­

tempting to develop a more general theory that included gravity, and again 
relying on the principle that the laws of nature must be symmetric, Einstein 

was led to general relativity: the idea that space-time itself is curved and 

that its curvature corresponds to mass. From these ideas emerged our cur­

rent cosmology of the Big Bang, in which the universe grew from a tiny 

speck some 13 billion years ago, and the remarkable concept of a black 
hole, an object so massive that light cannot escape its gravitational field. 

General relativity traces back to early work on non-Euclidean geometry, 

which led Gauss to the idea of a "metric," a formula for the distance be­

tween any two points. New geometries arise when this formula is not the 

classic Euclidean one derived from the Pythagorean theorem. As long as 

the formula obeys a few simple rules, it defines a meaningful concept of 

"distance." The main rule is that the distance from one point A to another 

C cannot decrease if you pass through a point B in between. That is, the 
direct distance from A to C is less than or equal to the distance from A to 

B plus that from B to C. This is the "triangle inequality," so called because 

in Euclidean geometry it states that any side of a triangle is shorter than 
the other two put together. 

The Pythagorean formula holds in Euclidean geometry, in which space 
is "flat." So when the metric is different from the Euclidean one, we can 
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attribute that difference to some kind of  "curvature" of  space. You can 
visualize this as a bending of space, but that's not really the best picture 
because there must then be a bigger space for the original one to bend in. 
A better way to think of "curvature" is that regions of space are either 
compressed or stretched, so that from the inside they seem to hold less, or 
more, space than they do from outside. (Fans of the British TV series 
Doctor Who will be reminded of the Tardis, a spaceship/time-machine 
whose inside is larger than its outside.) Gauss's brilliant student Riemann 
extended the idea of a metric from two dimensions to any number, and he 
modified the idea so that distances can be defined locally-just for points 
that are very close together. Such a geometry is called a Riemannian mani­
fold, and it is the most general kind of "curved space." 

Physics happens not in space but in space-time, where-according to 
Einstein-the natural "flat" geometry is not Euclidean but Minkowskian. 
Time enters into the "distance" formula in a different way from space. 
Such a geometric setup is a "curved space-time." It turned out to be just 
what the patent clerk ordered. 

·· •. t .. 
•·•
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Einstein struggled a long time to devise his equations for general relativity. 
He first investigated how light moves in a gravitational field, and this led 
him to base his later research on a single fundamental principle, the equiv­
alence principle. In Newtonian mechanics, gravity has the effect of a force, 
pulling bodies toward each other. Forces cause accelerations. The equiva­
lence principle states that accelerations are always indistinguishable from 
the effects of a suitable gravitational field. In other words, the way to put 
gravity into relativity is to understand accelerations. 

By 1 9 1 2, Einstein had convinced himself that a theory of gravity can­
not be symmetric under every Lorentz transformation; that kind of sym­
metry applies exactly, everywhere, only when matter is absent, gravity is 
zero, and space-time is Minkowskian. By abandoning this requirement of 
"Lorentz-invariance" he saved himself a lot of fruitless effort. "The only 
thing I believed firmly," he wrote in 1 950, "was that one had to incorpo­
rate the equivalence principle in the fundamental equations." But he also 
recognized the limitations even of that principle: it should be valid only 
locally, as a kind of infinitesimal approximation to the true theory. 

By 1 907, Einstein's friend Grossmann had become a geometry profes­
sor at ETH, and Albert was persuaded to take a position there too. Not 
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for long-after a year he left for Berlin and later went to Prague. But he 
kept in contact with Grossmann, and this paid off handsomely. In 1 9 1 2, 
Grossmann helped Einstein to work out what kind of mathematics he 
should be thinking about: 

This problem remained unsolvable to me until . . .  I suddenly real­
ized that Gauss's theory of surfaces held the key for unlocking the 
mystery . . .  However, I did not know at that time that Riemann had 
studied the foundations of geometry in an even more profound way 
. . .  My dear friend the mathematician Grossman was there when I 
returned from Prague to Zurich. From him I learned for the first 
time about Ricci and later about Riemann. So I asked my friend 
whether my problem could be solved by Riemann's theory. 

"Ricci" is Gregorio Ricci-Curbastro, the coinventor, along with his stu­
dent Tullio Levi-Civita, of calculus on Riemannian manifolds. The Ricci 
tensor is a measure of curvature, simpler than Riemann's original concept. 

Other sources have Einstein saying to Grossmann, "You must help 
me, or else I 'll go crazy!" Grossmann delivered. As Einstein later wrote, 
he "not only saved me the study of the relevant mathematical literature, 
but also supported me in the search for the field equations of gravita­
tion." In 1 9 1 3, Einstein and Grossmann published the first fruits of 
their combined labors, ending with a conjecture about the form of the 
required field equations : the stress-energy tensor must be proportional 
to . . .  something. 

What? 
They didn't yet know. It had to be another tensor, another measure of 

curvature. 
At that point they both made mathematical errors, which set them off 

on a lengthy wild goose chase. They were convinced, correctly, that their 
theory had to yield Newtonian gravity in a suitable limiting case-flat 
space-time, small gravity. They deduced from this some technical con­
straints on the sought-for equation, that is, constraints on the nature of 
the required "something." But their arguments were fallacious and the 
constraints did not apply. 

Einstein was convinced that the correct field equations should deter­
mine the mathematical form of the metric-the distance formula in 
space-time, which determines all of its geometrical properties-uniquely. 
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This i s  simply wrong: changes i n  the coordinate system can change the 
formula while having no effect on the intrinsic curvature of the space. But 
Einstein was unaware of the so-called Bianchi identities, which clarify the 
lack of uniqueness, and apparently so was Grossmann. 

It was every researcher's nightmare : an apparently watertight idea, 
which seemed to lead in the right direction but was actually leading them 
up the garden path. Eradicating such mistakes is desperately hard, because 
you're convinced they are not mistakes. Often you don't even realize what 
assumptions you are tacitly making. 

At the end of 1 9 1 4, Einstein finally realized that the field equations 
cannot determine the metric uniquely because of the possibility of choos­
ing a different coordinate system, which has no physical implications but 
changes the formula for the metric. He still did not know the Bianchi 
identities, but now he didn't need them. He finally knew that he was free 
to choose whichever coordinates were most convenient. 

On 1 8  November 1 9 1 4, Einstein opened up a new front in his war with 
the gravitational field equations. He had gotten close enough to his final 
formulation to s tart making predictions. He made two. One-really a 
"postdiction," made after the event-explained a tiny change already ob­
served in the orbit of the planet Mercury. The "perihelion" position, 
where the planet comes closest to the Sun, was slowly changing. Einstein's 
new theory of gravity told him how fast the perihelion should be mov­
ing-and his calculation was spot on. 

The second prediction required new observations to verify or falsify 
it-which was excellent news, because new observations are the best tests 
of new theories. According to Einstein's theory, gravity should bend light. 
The geometry of this effect is simple, and it concerns geodesics-the 
shortest path between any two points. If you stretch a string tight and 
hold it in mid-air, it forms a straight line; this happens because in Euclid­
ean space a straight line is a geodesic. If, however, you hold the two ends 
of the string against a football and pull it tight, it forms a curve lying on 
the surface of the ball. Geodesics on a curved space-the ball-are them­
selves curved. The same happens in a curved space-time, though the de­
tails are slightly different. 

�-!-� ....•.... 

The physical circumstances in which this effect might show up are also 
straightforward . A star, such as the Sun, will bend any light that passes 
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nearby. The only way to observe this effect, at that time, was to wait for an 
eclipse of the Sun, when the Sun's light no longer drowned out the light 
from stars whose position in the sky was close to the Sun's edge. If Ein­
stein was right, the apparent positions of those stars should shift slightly, 
compared to their positions when they were not aligned with the Sun. 

The quantitative analysis of this phenomenon is less straightforward. 
Einstein's first attempt, in 1 9 1 1 ,  predicted a shift of just under a second of 
arc. Newton would have predicted a similar amount, based on his belief 
that light is made from tiny particles :  the force of gravity would attract the 
particles, causing their paths to bend. But by 1 9 1 5  Einstein had deduced 
that in his new theory, the light should bend by twice that amount, 1 .74 
seconds of arc. 

Now there was a real prospect of deciding between Newton and Ein­
stein. On 25 November 1 9 1 4, Einstein wrote down his field equations in 
their final form. These Einstein equations constitute the basis of general 
relativity, the relativistic theory of gravity. They are written in a mathemat­
ical formalism known as a tens01'-a kind of hyped-up matrix. Einstein's 
equation tells us that the Einstein tensor is proportional to the rate of 
change of the stress-energy tensor. That is ,  the curvature of space-time is 
proportional to the quantity of matter present. These equations obey a 
kind of symmetry principle, but it is a local one. In small regions of space­
time, they have the same symmetries as special relativity, provided the lo­
cal effect of curvature is taken into account. 

Einstein noted that his calculations of the motion of the perihelion of 
Mercury and the deflection of light by a star remained unchanged by the 
minor modifications that he had made. He presented his equations to the 
Prussian Academy, only to discover that the mathematician David Hilbert 
had already submitted the identical equations but had claimed far more for 
them than just a theory of gravity. In fact, he had claimed that they in­
cluded the electromagnetic equations, which was a mistake. It is fascinat­
ing to see, yet again, a top mathematician coming very close to beating 
Einstein to the punch. 

Several attempts were made to verify Einstein's prediction that light 
would be deflected by the gravitational field of the Sun. The first, in 
Brazil, was spoiled by rain. In 1 9 1 4, a German expedition went to observe 
an eclipse in Crimea, but when World War I began they were instructed to 
return home-fast. Some did. The others were arrested but eventually 
made their way home unharmed. Naturally, no observations were made. 
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The war prevented observations in  Venezuela in 1 9 1 6 . The Americans 
tried in 1 9 1 8, with inconclusive results. Finally, a British expedition led by 
Arthur Eddington succeeded in May 1 9 1 9 , but did not announce its re­
sults until November. 

When it did, the verdict favored Einstein over Newton. There was a de­
flection, it was too big to fit a Newtonian model, and it fitted Einstein's 
beautifully. 

In retrospect, the experiments were not as decisive as they seemed. The 
range of experimental error was quite large, and the best conclusion was 
that Einstein was probably right. (More recent observations, with better 
techniques and equipment, have confirmed Einstein's theory.) But at the 
time, they were represented as definitive, and the media went ape. Anyone 
who could prove Newton wrong must be a genius. Anyone who could dis­
cover radically new physics must be the greatest living scientist. 

Thus was a legend born. Einstein wrote about his ideas in the Times of 
London. A few days later, the paper's editorial page responded: 

This is news distinctly shocking and apprehensions for the safety of 
confidence even in the multiplication table will arise . . .  It would take 
the presidents of two Royal Societies to give plausibility or even 
think ability to the declaration that light has weight and space has lim­
its. It just doesn't by definition, and that's the end of that-for com­
monfolk, however it may be for higher mathematicians. 

But the higher mathematicians were right. Soon the Times was telling 
the world that "only twelve people can understand the theory of 'the sud­
denly famous Dr. Einstein,' ' '  a myth that circulated for years, even when 
large numbers of physics undergraduates were routinely being taught the 
theory in their coursework. 

In 1 920, Grossmann showed the first symptoms of multiple sclerosis. 
He wrote his last paper in 1 930 and died in 1 936. Einstein went on to be­
come the iconic physicist of the twentieth century. In later life he grew to 
tolerate his fame, finding it vaguely amusing. Early on, he seems to have 
enjoyed interacting with the media. 

But now we must leave Einstein's career, except to remark that after 
1 920 his efforts in physics were devoted to a fruitless quest to combine 
relativity and quantum mechanics in a single "unified field theory." He was 
still working on this problem the day before his death, in 1 955. 
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" " R lmost everything is already discovered, and all that remains is to 
fill a few holes." This is discouraging news for a talented young 
man intending to study physics, especially when the news comes 
from someone who ought to know: in this case, Philipp von 

Jolly, a physics professor. 
The date was 1 874, and von Jolly's view reflected what most physicists 

of the period believed: physics was done. In 1 900 no less a luminary than 
Lord Kelvin said, "There is nothing new to be discovered in physics now. 
All that remains is more and more precise measurement." 

Mind you, he also said, "I can state flatly that heavier than air flying ma­
chines are impossible," and "Landing on the moon offers so many serious 
problems for human beings that it may take science another 200 years to 
lick them." Kelvin's biographer wrote that he spent the first half of his ca­
reer being right and the second half being wrong. 

But he wasn't totally wrong. In his 1 900 lecture "Nineteenth-Century 
Clouds over the Dynamical Theory of Heat and Light," he put his finger 
on two crucial gaps in the period's understanding of the physical universe: 
"The beauty and clearness of the dynamical theory, which asserts heat and 
light to be modes of motion, is at present obscured by two clouds. The 
first involves the question, How could the Earth move through an elastic 
solid, such as essentially is the luminiferous ether? The second is the 
Maxwell-Boltzmann doctrine regarding the partition of energy." The first 
cloud led to relativity, the second to quantum theory. 

Fortunately, the young recipient of Jolly's advice was not daunted. He 
had no wish to discover new things, he said-all he wanted was to develop 
a better understanding of the known fundamentals of physics. In the 

1 9 9 
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search for this understanding, he  brought about one of  the two great rev­
olutions in twentieth-century physics, and dispelled Kelvin's second cloud. 
His name was Max Planck. 

�:l·�· 
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Julius Wilhelm Planck was a professor of law in Kiel and Munich. His fa­
ther and his mother had both been theology professors, and his brother 
was a judge. So when his second wife, Emma Patzig, presented Julius with 
a son-his sixth child-the boy was certain to grow up in an intellectual 
environment. Max Karl Ernst Ludwig Planck was born on 23 April 1 858. 
Europe was in the usual political turmoil, and the boy's earliest memories 
included Prussian and Austrian troops marching into Kiel during the 
Danish-Prussian War of 1 864. 

By 1 867 the Plancks had moved to Munich, and Max was being tutored 
by the mathematician Hermann Muller at the King Maximilian School. 
Muller taught the boy astronomy, mechanics, mathematics, and some ba­
sic physics, including the law of conservation of energy. Planck was an ex­
cellent student, and he graduated unusually early, at the age of sixteen. 

He was also a talented musician, but he decided to study physics despite 
Jolly's well-intentioned advice. Planck carried out some experiments under 
Jolly's supervision but quickly switched to theoretical physics. He kept 
company with some of the world's leading physicists and mathematicians, 
moving to Berlin in 1 877 to study under Helmholtz, Gustav Kirchhoff, 
and Weierstrass. He passed his first examinations in 1 878 and obtained a 
doctorate in 1 879 with a thesis on thermodynamics. For a time he taught 
mathematics and physics at his old school. In 1 880, his habilitation thesis, 
on equilibrium states of bodies at different temperatures, was accepted, 
and he was qualified for a permanent academic career. He duly secured 
such a position, but not until 1 885, when the University of Kiel made him 
an associate professor. His research focused on thermodynamics, espe­
cially the concept of entropy. 

Max met Marie Merck, the sister of a friend, and in 1 887 they married 
and rented an apartment. In all, they had four children: Karl, twins Emma 
and Grete, and Erwin. 

In 1 889, the year the twins were born, Max was appointed to Kirch­
hoff's position in Berlin, becoming a full professor in 1 892. The family 
moved to a villa in the Grunewald region of Berlin, close to a number of 
other leading academics. One, the theologian Adolf von Harnack, became 
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a close friend. The Plancks were sociable, and famous intellectuals visited 
their house regularly. These included Einstein and the physicists Otto 
Hahn and Lise Meitner, who later made fundamental discoveries about 
nuclear fission, part of the long development leading to the atomic bomb 
and nuclear power stations. At these events the Plancks continued a tradi­
tion of playing music, started by Helmholtz. 

For a time life was rosy, but Marie contracted a lung disease, possibly tu­
berculosis, and died in 1 909. A year and a half later, at 52, Max remarried, 
this time to Marga von Hoesslin, with whom he had a third son, Hermann. 

In 1 894, a local electrical company was trying to develop a more efficient 
light bulb, so Max started some industrial contract research. Theoretically, 
the analysis of a light bulb was a standard physics problem known as 
"blackbody radiation"-how light would be emitted by a perfectly nonre­
flective body. Such a body, when heated, emits light of all frequencies, but 
the intensity of the light, or equivalently its energy, varies with the fre­
quency. A fundamental question was, how does the frequency affect the 
intensity? Without such basic data, it would be difficult to invent a better 
light bulb. 

There were good experimental results, and one theoretical law, the 
Rayleigh-Jeans law, had been derived from basic principles of classical 
physics. Unfortunately, this law disagreed with experiment at high frequen­
cies. In fact, it predicted something impossible: as the light's frequency 
increases, its energy should become infinitely large. This impossible result 
became known as the "ultraviolet catastrophe." Further experiments led to 
a new law, which fitted the observations for high-frequency radiation, 
known as Wien's law after its discoverer, Wilhelm Wien. 

However, Wien's law went wrong for low-frequency radiation. 
Physicists were faced with two laws: one working at low frequencies but 

not at high ones, the other doing the exact opposite. Planck hit on the idea 
of interpolating between the two: that is, writing down a mathematical ex­
pression that approximated the Rayleigh-Jeans law at low frequencies and 
Wien's law at high frequencies. The resulting formula is now called the 
Planck law for blackbody radiation. 

This new law was deliberately designed to match experiments beauti­
fully, across the entire spectrum of electromagnetic radiation, but it was 
purely empirical-derived from experiments, not from any basic physical 
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principle. Planck, pursuing his avowed intention to understand known 
physics better, was dissatisfied, and he devoted much effort searching for 
physical principles that would lead to his formula. 

Eventually, in 1 900, Planck noticed a curious feature of his formula. He 
could derive it by much the same calculation that Rayleigh and Jeans had 
employed, provided he made one tiny change. The classical derivation had 
assumed that for any given frequency, the energy of electromagnetic radi­
ation could in principle take any value whatsoever. In particular, it could 
get as close to zero as you wished. Planck realized that this assumption 
was the cause of the ultraviolet catastrophe, and that if he made a differ­
ent assumption, that troublesome infinity disappeared from the calcula­
tion. 

The assumption, though, was radical. The energy of radiation of a 
given frequency had to come as a whole number of "packets" of fixed 
size. In fact, the size of each packet had to be proportional to the fre­
quency-that is, equal to the frequency multiplied by some constant, 
which we now call Planck's constant and write using the symbol h. 

These energy packets were called quanta (singular: quantum) . Planck 
had quantized light. 

All very well, but why had experimentalists never noticed that the en­
ergy was always a whole number of quanta? By comparing his calculations 
with the observed energies, Planck was able to calculate the size of his 
constant, and it turned out to be very, very small. In fact, h is roughly 6 X 
1 0 -,4 joule-seconds. Roughly speaking, to notice the "gaps" in the possible 
range of energies-the values that classical physics permitted but quan­
tum physics did not-you had to make observations that were accurate to 
the 34th decimal place. Even today, very few physical quantities can be 
measured to more than six or seven decimal places, and in those days 
three was asking a lot. Direct observation of quanta required absurd levels 
of accuracy. 

It may seem strange that a mathematical difference so tiny that it can 
never be seen could have such a huge effect on the radiation law. But the 
calculation of the law involves adding up all the contributions to the en­
ergy from all possible frequencies. The result is a collective effect of all 
possible quanta. From the Moon you can't spot an individual grain of 
sand on Earth. But you can see the Sahara. If sufficiently many very tiny 
units combine, the result can be huge. 
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Planck's physics thrived, but his personal life was filled with tragedy. His 
son Karl was killed in action during the First World War. His daughter 
Grete died in childbirth in 1 9 1 7, and Emma suffered the same fate in 
1 9 1 9, having married Grete's widower. Much later, Erwin was executed by 
the Nazis for taking part in the unsuccessful 1 944 attempt to assassinate 
Adolf Hitler. 

By 1 905, new evidence had turned up that supported Planck's radical 
proposal, in the form of Einstein's work on the photoelectric effect. Re­
call that this is the discovery that light can be converted into electricity. 
Einstein was aware that electricity comes in discrete packages. Indeed, by 
then physicists knew that electricity is the motion of tiny particles called 
electrons. From the photoelectric effect, Einstein deduced that the same 
must be true of light. This not only verified Planck's ideas about light 
quanta, it explained what the quanta are: light waves, like electrons, must 
be particles. 

How can a wave be a particle? Yet that was the unequivocal message of 
the experiments. The discovery of particles of light, or photons, quickly 
led to the quantum picture of the world in which particles are really waves, 
behaving sometimes like one, sometimes like the other. 

The physics community s tarted to take quanta more seriously. The 
great Danish physicist Niels Bohr came up with a quantized model of the 
atom, in which electrons move in circular orbits around a central nucleus, 
with the size of the circle being limited to discrete quanta. The French 
physicist Louis de Broglie reasoned that since photons can be both waves 
and particles, and electrons are emitted by suitable metals when they are 
impacted by photons, then electrons must also be both waves and parti­
cles. Indeed, all matter must possess this dual existence-sometimes solid 
particle, sometimes undulating wave. That's why experiments can indicate 
either form. 

Neither "particle" nor "wave" really describes matter at extremely tiny 
scales. The ultimate constituents of matter are a bit of both-wavicles. De 
Broglie invented a formula to describe wavicles. 

Now came a key step, essential to our story. Erwin Schrodinger took 
de Broglie's formula and turned it into an equation that describes how 
wavicles move. Just as Newton's laws of motion were fundamental to 
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classical mechanics, Schrodinger's equation became fundamental to  quan­
tum mechanics. 
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Erwin was born in Vienna in 1 886, the offspring of a mixed marriage. His 
father, Rudolf Schrodinger, manufactured cerecloth, a waxy cloth used to 
make shrouds for the dead; he was also a botanist. Rudolf was a Catholic, 
while Erwin's mother, Georgine Emilia Brenda, was a Lutheran. From 
1 906 to 1 9 1 0  Erwin studied physics in Vienna under Franz Exner and 
Friedrich Hasenohrl, becoming Exner's assistant in 1 9 1 1 .  He gained his 
habilitation in 1 9 1 4, at the start of World War I, and spent the war as an 
officer in the Austrian artillery. Two years after the war ended, he married 
Annemarie Bertel. In 1 920 he became the equivalent of an associate pro­
fessor in Stuttgart, and by 1 921 he was a full professor in Breslau, now the 
city Wrodaw, in Poland. 

He published the equation that is now named after him in 1 926, in a pa­
per showing that it gives the correct energy levels for the spectrum of the 
hydrogen atom. This was quickly followed by three other major papers on 
quantum theory. In 1 927, he joined Planck in Berlin, but in 1 933, upset by 
the anti-Semitism of the Nazis, he left Germany for Oxford, where he 
was made a fellow of Magdalen College. Not long after he arrived, he and 
Paul Dirac were awarded the Nobel Prize in physics. 

Schrodinger maintained a scandalously unorthodox lifestyle, living with 
two women, and this offended the tender sensibilities of the Oxford dons. 
Within a year he had moved again, this time to Princeton, where he was 
offered a permanent position, but he decided not to accept-possibly be­
cause his attachment to both wife and mistress in the same household 
didn't go down any better in Princeton than it did in Oxford. Eventually, 
he settled in Graz, Austria, in 1 936, and ignored the opinions of strait­
laced Austrians. 

Hitler's occupation of Austria caused severe difficulties for 
Schrodinger, a known Nazi opponent. He publicly rejected his earlier 
views (and much later apologized to Einstein for doing so) . The ploy 
didn't work: he lost his job because he was politically unreliable, and had 
to flee to Italy. 

Schrodinger finally settled in Dublin. The year 1 944 saw the publication 
of What Is Life? an intriguing but flawed attempt to apply quantum 
physics to the problem of living creatures. He based his ideas on the con-
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cept of "negentropy," the tendency of life to disobey-or somehow sub­
vert-the second law of thermodynamics. Schrodinger emphasized that 
the genes of living creatures must be some kind of complicated molecule, 
containing coded instructions. We now call this molecule DNA, but its 
structure was discovered only in 1 953, by Francis Crick and James Wat­
son-inspired, in part, by Schrodinger. 

In Ireland, Schrodinger retained his relaxed attitude to sexuality, getting 
involved with students and fathering two children by different mothers. 
He died of tuberculosis in Vienna in 1 961 . 

�.'!� 
....•

.
..

... 

Schrodinger is best known for his cat. Not a real cat, but one that ap­
peared in a thought experiment. It is generally interpreted as a reason for 
not considering Schrodinger's waves to be real physical things. Instead, 
they are thought of as a behind-the-scenes description that can never be 
verified experimentally but that has the right consequences. However, this 
interpretation is controversial-if the waves do not exist, why do their 
consequences all work out so nicely? 

Anyway, back to the cat. According to quantum mechanics, wavides 
can interfere with each other, piling up on top of each other and reinforc­
ing when peak meets peak, and canceling each other out when peak meets 
trough. This type of behavior is called "superposition," so quantum wavi­
des can superpose-implying that they can contain a variety of potential 
states without fully existing in any of them. Indeed, according to Bohr and 
the famous "Copenhagen interpretation" of quantum theory, that is the 
natural state of affairs. Only when we observe some physical quantity do 
we force it out of some quantum superposition and into a single "pure" 
state. 

This interpretation works well for electrons, but Schrodinger wondered 
what it would imply for a cat. In his thought experiment, a cat locked in a 
box can be in a superposition of the states alive and dead. When you open 
the box, you observe the cat and force it into either one state or the other. 
As Pratchett noticed in Maskerade, cats aren't like that. Greebo, a hyper­
macho cat, emerges from a box in a third state: absolutely bloody furious. 

Schrodinger also knew that cats aren't like that, though for different 
reasons. An electron is a submicroscopic entity, and it behaves like some­
thing on the quantum level. It possesses (when we measure it) a particular 
position or velocity or spin that can be described relatively simply. A cat is 
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macroscopic, and i t  doesn't. You can superpose electron states, but not 
cats. My wife and I have two cats, and when they try to superpose, the re­
sult is flying fur and two highly indignant cats. The jargon term here is 
"decoherence," which explains why large quantum systems like cats look 
like the familiar "classical" systems in our daily lives. Decoherence tells us 
that the cat contains so many wavicles that they all get tangled up together 
and ruin the superposition in less time than light can travel the diameter of 
an electron. So cats, being macroscopic systems composed of an ab­
solutely gigantic number of quantum particles, behave like cats. They can 
be alive, or dead, but not both at once. 

Nonetheless, on suitably small scales-and we are talking very small 
stuff here, not anything you can see in a normal microscope-the uni­
verse behaves just as quantum physics says it does, and it can do two dif­
ferent things at the same time. And that changes everything. 

Just how strange the quantum world must be emerged from the research 
of Werner Heisenberg. Heisenberg was a brilliant theoretical physicist, but 
his grasp of experiments was so poor that during his examination for the 
doctorate he couldn't answer simple questions about telescopes and mi­
croscopes. He didn't even know how a battery worked. 

August Heisenberg married Anna Wecklein in 1 899 .  He was a 
Lutheran, she a Catholic, and she converted to his religion to make the 
marriage possible. They had much in common: he was a teacher and an 
expert clas sicist specializing in ancient Greek, while she was a head 
teacher's daughter and an expert on the Greek tragedies. Their first son, 
Erwin, was born in 1 900 and became a chemist. Their second, Werner, 
was born in 1 901  and changed the world. 

Germany was still a monarchy at this time, and the teaching profession 
carried high social status, so the Heisenbergs were financially comfortable 
and could send their sons to good schools. In 1 9 1 0, August was made pro­
fessor of medieval and modern Greek at the University of Munich, to 
which city the family moved. In 1 9 1 1 ,  Werner started at the King Maxim­
ilian School in Munich, where Planck had also studied. Werner's grandfa­
ther, Nikolaus Wecklein, was the school principal. The boy was bright and 
quick, partly because his father encouraged him to compete with his elder 
brother, and showed remarkable abilities in math and science. He had mu-
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sical talent too, and learned the piano so  well that by the age of 1 2  he  was 
performing in school concerts. 

Heisenberg later wrote that "both my interests in languages and in 
mathematics were awakened rather early." He earned top grades in Greek 
and Latin and did well in mathematics, physics, and religion. His worst 
subjects were athletics and German. His mathematics teacher, Christoph 
Wolff, was excellent, and stretched Werner's abilities by setting him special 
problems to solve. Soon the pupil had outclassed the teacher, and Heisen­
berg's school report stated, "With his independent work in the mathemat­
ical-physical field he has come far beyond the demands of the school." He 
taught himself relativity, preferring its mathematical content to its physical 
implications. When his parents asked him to tutor a local college student 
for her exams, he taught himself calculus, a subject not included in the 
school curriculum. He developed an interest in number theory, saying that 
"it's clear, everything is so that you can understand it to the bottom." 

To help Werner improve his Latin, his father brought him some old pa­
pers on mathematics, written in that language. Among them was Kro­
necker's dissertation on a topic ("complex units") in algebraic number 
theory. Kronecker, a world-class number theorist, famously believed that 
"God created the integers-all else is the work of Man." Heisenberg was 
inspired to have a go at proving Fermat's Last Theorem. After nine years 
in the school he graduated at the top of his class and attended the Univer­
sity of Munich. 

When World War I broke out, the Allies blockaded Germany. Food and 
fuel were in very short supply; the school had to be closed because it could 
not be heated, and on one occasion Werner was so weak from starvation 
that he fell off his bike into a ditch. His father and his teachers were fight­
ing in the army; the young men who remained behind received military 
training and nationalistic indoctrination. The end of the war brought the 
end of the German monarchy as well, and Bavaria briefly had a socialist 
government along Soviet lines, but in 1 9 1 9  German troops from Berlin 
kicked out the socialists and restored a more moderate social democracy. 

Like most of his generation, Werner was disillusioned by Germany's 
defeat and blamed his elders for their military failure. He became the 
leader of a group associated with the New Boy Scouts, an extremist right­
wing organization that aimed to restore the monarchy and dreamed of a 
Third Reich. Many branches of  the New Boy Scouts were anti-Semitic, 
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but Werner's group included a number of  Jewish boys. He  spent a lot of 
time with his boys, camping and hiking and generally trying to recapture a 
romantic vision of Germany as it once had been, but these activities 
ended in 1 933 when Hitler banned all youth organizations other than 
those he had set up himself. 

In 1 920, Werner went to the University of Munich, intending to be­
come a pure mathematician until an interview with one of the pure math 
professors put him off the idea. He decided instead to study physics un­
der Arnold Sommerfeld. Immediately recognizing Werner's abilities, Som­
merfeld allowed him to attend advanced classes. Soon Werner had done 
some original research on the quantum approach to atomic structure. His 
doctorate was awarded in 1 923, breaking the university's record for speed. 
In the same year, Hitler tried to overthrow the Bavarian government in the 
"beer hall putsch," intended as a prelude to a march on Berlin, but the at­
tempt failed. Hyperinflation was rampant; Germany was coming to pieces. 

Werner continued working. He collaborated with many leading physi­
cists, all of whom were thinking about quantum theory because that was 
where the action was. He worked with Max Born to devise a better theory 
of the atom. It occurred to Heisenberg to represent the state of an atom 
in terms of the frequencies observed in its spectrum-the kinds of light 
that it emitted. He boiled this idea down to a peculiar kind of mathematics 
involving lists of numbers. Born eventually realized that this kind of list 
was actually quite respectable: mathematicians called it a matrix. Happy 
that the ideas made sense, Born sent the paper off for publication. As the 
ideas developed, they matured into a new, systematic mathematics of 
quantum theory: matrix mechanics. It was seen as a competitor to 
Schrodinger's wave mechanics. 
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Who was right? It turned out the two theories were identical, as 
Schrodinger discovered in 1 926. They were two distinct mathematical rep­
resentations of the same underlying concepts-just as Euclidean methods 
and algebra are two equivalent ways of looking at geometry. At first 
Heisenberg could not believe this, because the essence of his matrix ap­
proach was the existence of discontinuous jumps as an electron changed 
its state. The entries in his matrices were the associated changes of energy. 
He couldn't see how waves, as continuous entities, could model disconti­
nuities . In a letter to the Austrian-Swiss physicist Wolfgang Pauli, he 
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wrote, "The more I think about the physical portion of  Schrodinger's the­
ory, the more repulsive I find it . . .  What Schrodinger writes about the vi­
sualizability of his theory 'is probably not quite right,' in other words, it's 
crap." But really this disagreement was a rerun of a much older debate, in 
which Bernoulli and Euler had disagreed about solutions of the wave 
equation. Bernoulli had a formula for the solutions, but Euler could not 
see how this formula, which looked continuous, could represent discon­
tinuous solutions. Nevertheless, Bernoulli was right, and so was 
Schrodinger. His equations might be continuous, but many features of  
their solutions could be discrete-including the energy levels. 

Most physicists preferred the wave-mechanical picture because it was 
more intuitive. Matrices were a bit too abstract. Heisenberg still preferred 
his lists, because they consisted of observable quantities, and it seemed 
impossible to detect one of Schrodinger's waves experimentally. In fact, 
the Copenhagen interpretation of quantum theory, dramatized as 
Schrodinger's cat, stated that any attempt to do so would "collapse" the 
wave into a single, well-defined spike. So Heisenberg became more and 
more concerned about what aspects of the quantum world can be meas­
ured, and how. You can measure every entry in his lists. You can't do that 
for one of Schrodinger's waves. Heisenberg considered this difference a 
powerful reason for sticking to matrices. 

Following this line of thought, he discovered that in principle you can 
measure a particle's position as accurately as you wish-but there is a price 
to be paid, because the more accurately you know the position, the less ac­
curately you can know the momentum. Conversely, if you can measure the 
momentum very accurately, you lose track of the position. The same 
trade-off occurs for energy and time. You can measure one or the other, 
but not both. Not if you want high-accuracy measurements. 

This wasn't a problem with experimental procedure; it was an inherent 
feature of quantum theory. He wrote out his reasoning in a letter to Pauli 
in February 1 927. The letter eventually inspired a paper, and Heisenberg's 
idea acquired the name "uncertainty principle." It was one of the first ex­
amples of an inherent limitation in physics. Einstein's assertion that noth­
ing can move faster than light was another. 

In 1 927, Heisenberg became Germany's youngest professor, at the 
University of Leipzig. In 1 933, the year Hitler rose to power, Heisenberg 
won the Nobel Prize for physics. This made him a highly influential fig­
ure, and his willingness to stay in Germany during the Nazi regime made 



2 1 0  W H Y  B E A U T Y  I S  T R U T H  

many believe that Heisenberg was himself a Nazi. A s  far a s  can be  estab­
lished, he wasn't. But he was a patriot, and that led him to associate with 
Nazis and be complicit in many of their activities. There is some evi­
dence that Heisenberg tried to stop the ruling powers kicking Jews out of 
university positions, but to no effect. In 1 937, he found himself de­
scribed as a "white Jew" and was under threat of being sent to a concen­
tration camp, but after a year he was cleared of suspicion by Heinrich 
Himmler, head of the SS. Also in 1 937, Heisenberg married Elisabeth 
Schumacher, the daughter of an economist .  Their first children were 
twins; eventually they had seven. 

During World War II, Heisenberg was one of the leading physicists 
involved in Germany's search for nuclear weapons-the "atomic 
bomb." He worked on nuclear reactors in Berlin, while his wife and chil­
dren were dispatched to the family's summer home in Bavaria. His role 
in Germany's atom bomb project has proved highly controversial. When 
the war ended he was detained by the British and held for six months for 
questioning in a country house near Cambridge. The transcripts of his 
interrogations, recently made public, have exacerbated the controversy. 
Heisenberg does say at one point that he was solely interested in making 
a nuclear reactor ("engine") and did not want to be involved in a bomb. 
"I would say that I was absolutely convinced of the possibility of our 
making a uranium engine, but I never thought we would make a bomb, 
and at the bottom of my heart I was really glad that it was to be an en­
gine and not a bomb. I must admit that." The truth of this claim is still 
hotly debated. 

After the war, and his release from British custody, Heisenberg went 
back to work on quantum theory. He died of cancer in 1 976. 

Most of the great German creators of quantum theory came from an in­
tellectual background-they were the sons of doctors, lawyers, academics, 
or other professionals. They lived in expensive homes, played music, and 
took part in the local social life and culture. The great English creator of 
quantum mechanics had a very different and much sadder childhood, with 
an autocratic and distinctly eccentric father who was largely estranged 
from his own parents and family, and a mother who was so browbeaten 
that she and two of her children ate in the kitchen while her husband and 
their younger son ate in total silence in the dining room. 
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The father was Charles Adrien Ladislas Dirac, born in the Swiss canton 
of Valais in 1 866, who ran away from home at the age of 20. Charles ar­
rived in Bristol in 1 890 but did not become a British citizen until 1 9 1 9 . In 
1 899, he married Florence Hannah Holten, a sea captain's daughter, and 
their first child, Reginald, was born the next year. Two years later a second 
son, Paul Adrien Maurice, was added to the growing family; four years af­
ter that they had a daughter, Beatrice. 

Charles did not tell his parents that he had married, or that they had be­
come grandparents, until 1 905, when he visited his mother in Switzerland. 
By then, his father had been dead for ten years. 

Charles worked as a teacher at the Merchant Venturer's Technical Col­
lege in Bristol. He was generally considered a good teacher, but he was 
also renowned for a total absence of human feelings and very strict disci­
pline. He was, in short, a martinet, but so were many teachers. 

Paul, a natural introvert, was made even more so by his father's curious 
isolation and lack of any social life. Charles insisted that Paul speak to him 
only in French, presumably to encourage him to learn that language. Since 
Paul's French was dreadful, he found it simpler not to speak at all. Instead, 
he spent his time wondering about the natural world. The antisocial dining 
arrangements in the Dirac household also seem to have stemmed from 
the rule that conversation should be held entirely in French. It was never 
clear whether Paul actively hated his father or just disliked him, but when 
Charles died, Paul's main comment was "I feel much freer now." 

Charles was proud of Paul's intellectual abilities and very ambitious for 
his children-by which he meant that they should do what he had planned 
for them. When Reginald said he wanted to become a doctor, Charles in­
sisted that he become an engineer. In 1 9 1 9, Reginald obtained a very poor 
engineering degree; five years later, while working on an engineering proj­
ect in Wolverhampton, he killed himself 

Paul lived at home with his parents, and also studied engineering at the 
same college as his brother. His favorite subject was mathematics, but he 
chose not to study that. Possibly he didn't want to go against his father's 
wishes; but he was also under the erroneous impression, still widespread 
today, that the only career for someone with a mathematics degree is 
school-teaching. No one had told him that there were alternatives­
among them, research. 

Salvation came in the form of a newspaper headline. The front page of 
the Times for 7 November 1 9 1 9  shrieked, REVOLUTION IN SCIENCE. 
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NEW THEORY OF THE UNIVERSE. NEWTONIAN IDEAS OVER­
THROWN. Halfway down the second column was the subheading SPACE 
' 'WARPED.'' Suddenly everyone was talking about relativity. 

Recall that one of the predictions of general relativity is that gravity 
bends light, by twice the amount that Newton's laws would predict. Frank 
Dyson and Sir Arthur Stanley Eddington had mounted an expedition to 
Principe Island in West Africa, where a total eclipse of the Sun was due. 
Simultaneously, Andrew Crommelin, of Greenwich Observatory, led a 
second expedition to Sobral, in Brazil. Both parties observed stars near 
the edge of the Sun during the period of totality, and found slight dis­
placements in the stars' apparent positions, consistent with Einstein's pre­
dictions, but not with Newtonian mechanics. 

Einstein, an overnight celebrity, sent his mother a postcard: "Dear 
Mother, joyous news today. H. A. Lorentz telegraphed that the English 
expeditions have actually demonstrated the deflection of light from the 
Sun." Dirac was hooked. "I was caught up in the excitement produced by 
relativity. We discussed it very much. The students discussed it among 
themselves, but had very little accurate information to go on." Public 
knowledge of relativity was confined largely to the word; philosophers 
claimed that they had known for years that "everything is relative," and 
dismissed the new physics as old hat. Unfortunately, they only displayed 
their ignorance, and the ease with which they had fallen for misleading 
terminology. 

Paul went to some lectures on relativity by Charlie Broad, then a philos­
ophy professor at Bristol, but their mathematical content was insignificant. 
Eventually, he bought a copy of Eddington's Space, Time and Gravitation 
and taught himself the necessary mathematics and physics. Before leaving 
Bristol, he knew both special and general relativity inside out. 
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Paul was good at theory, terrible at laboratory work. In later years, physi­
cists spoke of the "Dirac effect": he had only to walk into a laboratory for 
nearby experiments to go wildly wrong. An engineering profession would 
have been a disaster. He found himself with a first-class degree, but unem­
ployed at a time when jobs were scarce because of the postwar economic 
depression. Luckily, he was offered the chance to study mathematics at 
Bristol University, all tuition paid, and he leaped at it. There he specialized 
in applied mathematics. 
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In 1 923, Paul became a postgraduate research student at the University 
of Cambridge, where his shyness was a real handicap. He wasn't interested 
in sports, made few friends, and had nothing whatsoever to do with 
women. He spent most of his time in the library. In 1 920, he had spent the 
summer working at the same factory as his brother Reginald. The two 
would often pass in the street but never stopped to talk, so ingrained was 
the habit of silence between family members. 

Paul quickly rose to prominence; within six months he had written his 
first research paper. Other papers followed in a rapid stream. Then, in 
1 925, he encountered quantum mechanics. On a long autumn walk in the 
Cambridgeshire countryside he found himself thinking about Heisen­
berg's "lists." These are matrices, and matrices do not commute, some­
thing that had initially bothered Heisenberg. Dirac was aware of De's idea 
that in these circumstances the important quantity is the commutator 
AB - BA, not the product AB, and he was struck by the intriguing thought 
that a very similar concept occurs in the Hamiltonian formalism of me­
chanics, where it is called a Poisson bracket. But Dirac couldn't remember 
the formula. 

The thought kept him awake much of the night, and the next morning 
he "hurried along to one of the libraries as soon as it was open, and then I 
looked up Poisson brackets in Whittaker's Analytical Dynamics, and I 
found that they were just what I needed." His discovery was this : the com­
mutator of two quantum matrices is equal to the Poisson bracket of the 
corresponding classical variables, multiplied by the constant ih/2'Jt. Here h 
is Planck's constant, i is R ,  and 'Jt is, well, 'Jt. 

This was a dramatic discovery. It told physicists how to turn classical 
mechanical systems into quantum ones. The mathematics was very beauti­
ful, linking two deep but previously unconnected theories. Heisenberg was 
impressed. 

Dirac's contributions to quantum theory are many, and I will select just 
one of the high points, his relativistic theory of the electron, which dates 
from 1 927. By then, the quantum theorists knew that electrons have 
"spin"-somewhat analogous to the spin of a ball about an axis, but with 
strange features that make the analogy very rough. If you take a spinning 
ball and rotate the system through a full 3600, both ball and spin get back 
to where they started. But when you do the same to an electron, the spin 
reverses. You have to rotate through 7200 before the spin gets back to its 
original value. 
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This i s  actually very similar to quaternions, whose interpretation a s  "ro­
tations" of space has the same quirk. Mathematically, rotations of space 
form the group SO(3), but the relevant group for both quaternions and 
electrons is SU(2) . These groups are almost the same, but SU(2) is twice 
as big, built-in a certain sense-out of two copies of SO(3) . It is called a 
"double cover," and the result is to expand a 3600 rotation into one 
through twice that angle. 

Dirac didn't use quaternions, and he didn't use groups either. But over 
the Christmas season at the end of 1 927 he came up with "spin matrices," 
which play the same role. Mathematicians later generalized Dirac's matri­
ces to "spinors," which are important in the representation theory of Lie 
groups. 

The spin matrices allowed Dirac to formulate a relativistic quantum 
model of the electron. It did everything he had hoped for-and a little 
more. It predicted solutions with negative energy as well as the expected 
ones with positive energy. Eventually, after some false starts, this puzzling 
feature led Dirac to the concept of "antimatter"-that every particle has a 
corresponding antiparticle, with the same mass but the opposite charge. 
The antiparticle of the electron is the positron, and it was unknown until 
Dirac predicted it. 

The laws of physics remain (almost) unchanged if you replace every 
particle with its antiparticle-so that operation is a symmetry of the natu­
ral world. Dirac, who was never terribly impressed by group theory, had 
discovered one of the most fascinating symmetry groups in nature. 

From 1 935 onward, until his death in Tallahassee in 1 984, Dirac placed 
enormous value on the mathematical elegance of physical theories, and 
used that principle as a touchstone for his research. If it wasn't beautiful, he 
believed, it was wrong. When he visited Moscow State University in 1 956, 
and followed tradition by writing words of wisdom on a blackboard to be 
kept for posterity, he wrote, ''A physical law must possess mathematical 
beauty." And he talked of a "mathematical quality" in nature. Yet he never 
seemed to think of group theory as beautiful, possibly because physicists 
mostly approach groups through massive calculations. Only mathemati­
cians, it seemed, were attuned to the exquisite beauty of Lie groups. 
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Beautiful or not, group theory soon became essential reading for any bud­
ding quantum theorist, thanks to the son of a leather merchant. 
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At the turn of the nineteenth century, leather was big business, and it 
still is. But in those days a small businessman could make a good living by 
tanning and selling leather. A good example was Antal Wigner, the direc­
tor of a tannery. He and his wife Erzsebet were of Jewish descent, but did 
not practice Judaism. They lived in what was then Austro-Hungary, in the 
city of Pest. Conjoined with neighboring Buda, this town became today's 
Budapest, the capital of Hungary. 

Jena Pal Wigner, the second of their three sons, was born in 1 902, and 
between the ages of five and ten he was educated at home by a private tu­
tor. Soon after Jena started school, he was diagnosed with tuberculosis 
and sent to an Austrian sanatorium to recover. He stayed there for six 
weeks before it turned out that the diagnosis had been wrong. Had it been 
right, he would almost certainly not have survived to adulthood. 

Made to lie on his back much of the day, the boy did mathematical 
problems in his head to pass the time. "I had to lie on a deck chair for days 
on end," he later wrote, "and I worked terribly hard on constructing a tri­
angle if the three altitudes are given." The altitudes of a triangle are the 
three lines that pass through a corner and hit the opposite side at right an­
gles. Finding the altitudes, given the triangle, is easy. Going in the opposite 
direction is decidedly more difficult. 

After Jena left the sanatorium he continued to think about mathemat­
ics. In 1 9 1 5, at Budapest's Lutheran High School, he met another boy who 
would become one of the world's leading mathematicians : Janos (later 
John) von Neumann. But the two never became more than loose acquain­
tances, because von Neumann tended to keep to himself 

In 1 9 1 9, the Communists overran Hungary and the Wigners fled to 
Austria, returning to Budapest later in the same year when the Communists 
were kicked out. The entire family converted to Lutheranism, but this had 
little effect on Jena, he later said, because he was "only mildly religious." 

In 1 920, Jena finished school near the top of his class. He wanted to 
become a physicist, but his father wanted him to join the family leather­
tanning business. So instead of taking a physics degree, Jena studied 
chemical engineering, which his father thought would help to advance the 
business. For his first year at university, the young man went to the Bu­
dapest Technical Institute; then he switched to the Technische 
Hochschule in Berlin. He ended up spending most of his time in the 
chemical laboratory, which he enjoyed, and precious little time in theoreti­
cal classes. 
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Still, Jena had not given up on  physics. The University of  Berlin was 
not far away, and who might be there but Planck and Einstein, along with 
lesser luminaries. Jena took advantage of their proximity and went to the 
immortals' lectures. He completed his doctorate, with a thesis on the for­
mation and breakup of molecules, and duly joined the tannery. Pre­
dictably, this proved a bad idea: "I did not get along very well in the 
tannery . . .  I did not feel at home there . . .  I did not feel that this was my 
life." His life was mathematics and physics. 

In 1 926, he was contacted by a crystallographer at the Kaiser Wilhelm 
Institute who wanted a research assistant. The duties would combine both 
of Wigner's interests, in a chemical context. The project had a huge influ­
ence on Wigner's career, and thus on the course of nuclear physics, be­
cause it introduced him to group theory-the mathematics of symmetry. 
The first major application of group theory to physics had been the classi­
fication of all 230 possible crystal structures. Wigner wrote, "I received a 
letter from a crystallographer who wanted to find out why the atoms oc­
cupy positions in the crystal lattices which correspond to symmetry axes. 
He also told me that this had to do with group theory and that I should 
read a book on group theory and then work it out and tell him." 

Perhaps no less dismayed than his son by Jena 's foray into the tanning 
trade, Antal Wigner agreed to allow the research assistantship. Jena started 
by reading a few of Heisenberg's papers on quantum theory, and devel­
oped a theoretical method to calculate the spectrum of an atom with three 
electrons. But he also realized that his methods would prove extraordinar­
ily complicated for more electrons than three. At this point, he turned for 
advice to his old acquaintance von Neumann, who suggested he read 
about group representation theory. This area of mathematics was heavily 
laden with the algebraic concepts and techniques of the time, notably ma­
trix algebra. But thanks to his studies in crystallography and his familiarity 
with a leading algebra textbook of the period-Heinrich Weber's 
Lehrbuch der Algebra-matrices posed no problem for Wigner. 

Von Neumann's advice proved sound. If an atom possesses some num­
ber of electrons, then since all electrons are identical, the atom does not 
"know" which electron is which. In other words, the equations describing 
the radiation emitted by that atom must be symmetric under all permuta­
tions of those electrons. Using group theory, Wigner developed a theory 
of the spectrum of atoms with any number of electrons. 
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To that point, his work had taken place within the traditional realm of 
classical physics. But quantum theory was where the excitement was. Now 
he embarked on his life's masterwork, the application of group represen­
tation theory to quantum mechanics. 

Ironically, he did so despite, not because of, his new job. David Hilbert, 
the elder statesman of German mathematics, had developed a keen inter­
est in the mathematical principles behind quantum theory and required 
the services of a research assistant. In 1 927, Wigner went to Gottingen to 
join Hilbert's research group. His ostensible role was to provide physical 
insight to inform Hilbert's vast mathematical expertise. 

It didn't quite work out as planned. The two met only five times in the 
course of a year. Hilbert was old, tired, and increasingly reclusive. So 
Wigner went back to Berlin, gave lectures on quantum mechanics, and 
continued to put together his most famous book: Group Theory and Its 
Application to the Quantum Mechanics of Atomic Spectra. 

He had been partly anticipated by Hermann Weyl, who had also written 
a book about groups in quantum theory. But Weyl's main focus was on 
foundational issues, whereas Wigner wanted to solve specific physical 
problems. Weyl was after beauty, Wigner was seeking truth . 

.. �!.�., ..
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We can understand Wigner's approach to group theory in a simple, classi­
cal context, the vibrations of a drum. Musical drums are usually circular, 
but in principle they can be any shape. When you hit a drum with a stick, 
the skin vibrates and makes a noise. Different shapes of drum produce 
different sounds. The range of frequencies a drum can produce, called its 
spectrum, depends in a complex manner on the drum's shape. If the drum 
is symmetrical, we might expect the symmetry to show up in the spec­
trum. It does, but in a subtle way. 

Imagine a rectangular drum-you don't see these often outside of 
mathematics departments. The typical patterns of vibration for such a 
drum divide it into a number of smaller rectangles, for example: 

Two patterns of v ibration of 

a rectangu la r  drum.  
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Here we see two different vibrational patterns with two different fre­
quencies. The pictures are snapshots of the patterns, taken at one instant. 
The dark regions are displaced downward, the white ones upward. 

The symmetries of the drum have implications for the patterns, be­
cause any symmetry transformation of the drum can be applied to a pos­
sible pattern of vibration to produce another possible pattern of 
vibration. So the patterns come in symmetrically related sets. However, in­
dividual patterns need not have the same symmetries as the drum. For in­
stance, a rectangle is symmetric under rotation through 1 80° . If we apply 
this symmetry transformation to the two patterns above, they become: 

The same two patterns after 

rotating the drum through 1 80° .  

The left-hand pattern is unchanged, so it shares the rotational symme­
try of the drum. But the right-hand pattern has swapped dark regions for 
light. This effect is called spontaneous symmetry-breaking, and it is very 
common in physical systems :  it occurs when a symmetric system has less­
symmetric states. The left-hand pattern does not break symmetry, but the 
right-hand one does. Let's focus on the right-hand pattern and see what 
effect its broken symmetry has. 

Although the pattern and its rotation are different, they both vibrate at 
the same frequency, because rotation is a symmetry of the drum and hence 
of the equations that describe its vibrations. So the spectrum of the drum 
contains this particular frequency "twice." It may seem difficult to detect 
that effect experimentally, but if you make small changes in the drum that 
destroy its rotational symmetry-say by making a small indentation along 
one edge-then the two frequencies drift slightly apart, and you can spot 
that there are two of them, very close together. This would not have hap­
pened if the frequency had occurred only once for the symmetric drum. 

Wigner realized that the same effect arises with symmetric molecules, 
atoms, and atomic nuclei. The sounds made by the drum become vibra­
tions of the molecules, and the spectrum of sounds is replaced by the 
spectrum of emitted or absorbed light. In the quantum world, the spec­
trum is created by transitions between different energy states, and the 
atom emits photons whose energy-hence frequency, thanks to Planck-
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corresponds to that difference. Now the spectrum can be detected using a 
spectroscope. Again, some of the frequencies-observed as spectral 
lines-may be double (or multiple) because of the symmetry of the mole­
cule, atom, or nucleus. 

How can we detect this multiplicity? We can't make an indentation in 
the molecule, as we did for the drum. But we can place the molecule in a 
magnetic field. This also destroys the underlying symmetry and splits the 
spectral lines. Now you can use group theory-more strictly, group repre­
sentation theory-to calculate the frequencies and how they split. 

Representation theory is one of the most beautiful and powerful math­
ematical theories, but it is also technically demanding and full of hidden 
pitfalls. Wigner turned it into a high art. Others struggled to follow his 
lead. 

By 1 930, Wigner had secured a part-time post in America, at the Institute 
for Advanced Study, and he shuttled between Princeton and Berlin. In 
1 933, the Nazis passed laws forbidding Jews to hold university jobs, so 
Wigner moved permanently to the United States-mainly at Princeton, 
where he anglicized his name to Eugene Paul. His sister Margit joined him 
in Princeton. There she met Dirac, who was visiting, and in 1 937 the two 
were married, to everyone's amazement. 

Margit's marriage worked out fine, but Eugene's job did not. In 1 936, 
Wigner wrote, "Princeton dismissed me. They never explained why. I 
could not help feeling angry." Actually, Wigner resigned, apparently be­
cause he was not advancing sufficiently quickly. Presumably he believed 
that Princeton's refusal to promote him had effectively forced him to re­
sign, so he felt as though he had been fired. 

He quickly found a new job at the University of Wisconsin, took US 
citizenship, and met a physics student named Amelia Frank. They married, 
but Amelia had cancer and died within a year. 

At Wisconsin, Wigner turned his attention to nuclear forces and dis­
covered that they are governed by the symmetry group SU (4) . He also 
made a basic discovery concerning the Lorentz group, published in 1 939. 
But group theory was not then a standard part of a physicist's training, 
and its main application was still to the rather specialized area of crystal­
lography. To most physicists, group theory looked complicated and unfa­
miliar, a fatal combination. The quantum physicists, appalled by what was 
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invading their patch, described the development a s  the "Gruppenpest," or 
"group disease." Wigner had triggered an epidemic and his colleagues did 
not want to catch it. But Wigner's views were prophetic. Group-theoretic 
methods came to dominate quantum mechanics, because the influence of 
symmetry is all-pervasive. 

In 1 941 , Wigner began his second marriage, to a teacher named Mary 
Annette. They had two children, David and Martha. During the war, 
Wigner, like von Neumann and a great many top mathematical physicists, 
worked on the Manhattan Project to construct an atomic bomb. He was 
awarded the Nobel Prize in Physics in 1 963. 

Despite living for years in the USA, Wigner always longed for his home­
land. ''After 60 years in the United States," he wrote in his declining years, 
"I am still more Hungarian than American. Much of American culture es­
capes me." He died in 1 995. The physicist Abraham Pais described him as 
"a very strange man . . .  one of the giants of 20th century physics." The 
viewpoint he developed is revolutionizing the twenty-first century as well. 
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8 y the late twentieth century, physics had made extraordinary ad­
vances. The large-scale structure of the universe seemed to be very 
well described by general relativity. Remarkable predictions such as 
the existence of black holes-regions of space-time from which light 

can never escape, created by the collapse of massive stars under their own 
gravity-were supported by observations. The small-scale structure of 
the universe, on the other hand, was described in extraordinary detail and 
with exquisite precision by quantum theory, in its modern form of quan­
tum field theory, which incorporates special but not general relativity. 

There were two serpents in the physicist'S paradise, however. One was a 
"philosophical" serpent: these two wildly successful theories disagreed 
with each other. Their assumptions about the physical world were mutu­
ally inconsistent. General relativity is "deterministic"-its equations leave 
no room for randomness. Quantum theory has inherent indeterminacy, 
captured by Heisenberg's uncertainty principle, and many events, such as 
the decay of a radioactive atom, happen at random. The other serpent was 
"physical": the quantum-based theories of elementary particles left a 
number of important issues unresolved-such as why particles have par­
ticular masses or indeed, why they have mass at all. 

Many physicists believed that both serpents could be expelled from 
their Garden of Eden by the same bold action: unify relativity and quan­
tum theory. That is, devise a new theory, a logically consistent one, that 
agrees with relativity on large scales and with quantum theory on small 
scales. This was what Einstein had tried to do for half his life-and failed. 
With typical modesty, physicists christened this unified view a "Theory of 

2 2 1  
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Everything." The hope was that the whole of physics could be  boiled 
down to a set of equations simple enough to be printed on a T-shirt. 

It wasn't such a wild idea. You can certainly get Maxwell's equations on 
a T-shirt, and I currently own one with the equations of special relativity, 
with the slogan "Let there be light" in Hebrew. A friend bought it for me 
in the Tel Aviv airport. Less frivolously, major unifications of apparently 
disparate physical theories have been achieved before. Maxwell's theory 
united magnetism and electricity, once thought to be entirely distinct natu­
ral phenomena powered by entirely different forces of nature, into a single 
phenomenon: electromagnetism. The name may be awkward, but it accu­
rately reflects the process of unification. A more modern instance, less 
well known except to the physics community, is the electroweak theory, 
which unified electromagnetism with the weak nuclear force-see below. 
A further unification with the strong nuclear force has left just one thing 
missing from the mix: gravity. 

Given this history, it is entirely reasonable to hope that this final force 
of nature can be brought into line with the rest of physics. Unfortunately, 
gravity has awkward features that make this process difficult. 

It could be that no Theory of Everything is possible. Although mathemat­
ical equations-"laws of nature"-have so far been very successful as ex­
planations of our world, there is no guarantee that this process must 
continue. Perhaps the universe is less mathematical than physicists imagine. 

Mathematical theories can approximate nature very well, but it is not 
certain that any piece of mathematics can capture reality exactly. If not, 
then a patchwork of mutually inconsistent theories might provide work­
able approximations valid in different domains-and there might not be a 
single overriding principle that combines all of those approximations and 
works in all domains. 

Except, of course, for the trivial list of if/then rules: "If speeds are 
small and scales are big, use Newtonian mechanics; if speeds are large and 
scales are big use special relativity," and so on. Such a mix-and-match the­
ory is horribly ugly; if beauty is truth, then mix-and-match can only be 
false. But perhaps at root the universe is ugly. Perhaps there is no root to 
be at. These are not appealing thoughts, but who are we to impose our 
parochial aesthetic on the cosmos? 
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The view that a Theory of Everything must exist brings to  mind 
monotheist religion-in which, over the millennia, disparate collections of 
gods and goddesses with their own special domains have been replaced by 
one god whose domain is everything. This process is widely viewed as an 
advance, but it resembles a standard philosophical error known as "the 
equation of unknowns" in which the same cause is assigned to all mysteri­
ous phenomena. As the science fiction writer Isaac Asimov put it, if you 
are puzzled by flying saucers, telepathy, and ghosts, then the obvious ex­
planation is that flying saucers are piloted by telepathic ghosts. "Explana­
tions" like this give a false sense of progres s-we used to have three 
mysteries to explain; now we have just one. But the one new mystery con­
flates three separate ones, which might well have entirely different explana­
tions. By conflating them, we blind ourselves to this possibility. 

When you explain the Sun by a sun-god and rain by a rain-god, you can 
endow each god with its own special features. But if you insist that both 
Sun and rain are controlled by the same god, then you may end up trying 
to force two different things into the same straitjacket. So in some ways 
fundamental physics is more like fundamentalist physics. Equations on a 
T-shirt replace an immanent deity, and the unfolding of the consequences 
of those equations replaces divine intervention in daily life. 

Despite these reservations, my heart is with the physical fundamental­
ists. I would like to see a Theory of Everything, and I would be delighted 
if it were mathematical, beautiful, and true. I think religious people might 
also approve, because they could interpret it as proof of the exquisite 
taste and intelligence of their deity. 

··�·l·.( 
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Today's quest for a Theory of Everything has its roots in an early attempt 
to unify electromagnetism and general relativity-at the time, the whole of 
known physics. This attempt was made only fourteen years after Einstein's 
first paper on special relativity, eight years after his prediction that gravity 
could bend light, and four years after the finished theory of general rela­
tivity was revealed to a waiting world. It was such a good attempt that it 
could easily have diverted physics onto a new course entirely, but unfortu­
nately for its inventor, his work coincided with something that did set 
physics on a new course: quantum mechanics. In the ensuing gold rush, 
physicists lost interest in unified field theories; the world of the quantum 
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offered far richer pickings, with far more chance o f  making a major dis­
covery. It would be sixty years before the idea behind that first attempt 
was revived. 

It began in the city of Konigsberg, then the capital of the German 
province of East Prussia. Konigsberg is now Kaliningrad, the administra­
tive center of a Russian exclave lying between Poland and Lithuania. This 
city's surprising influence on the development of mathematics began with 
a puzzle. Konigsberg lay on the river Pregel (now Pregolya) , and seven 
bridges linked the two banks of the river to each other and to two islands. 
Did there exist a route that would permit the citizens of Konigsberg to 
walk across every bridge in turn, never crossing the same bridge twice? 
One of those citizens, Leonhard Euler, developed a general theory of 
such questions, implying that in this case the answer was no, and thereby 
took one of the first steps toward the area of mathematics now called 
topology. Topology is about geometrical properties that remain un­
changed when a shape is bent, twisted, squashed, and generally deformed 
in a continuous manner-no tearing or cutting. 

Topology has become one of the most powerful developments in to­
day's mathematics, with many applications to physics. It tells us the possi­
ble shapes of multidimensional spaces, a growing theme both in 
cosmology and particle physics. In cosmology we want to know the shape 
of space-time on the largest scale, that of the entire universe. In particle 
physics we want to know the shape of space and time on small scales. You 
might think the answer is obvious, but physicists no longer do. And their 
doubts also trace back to Konigsberg. 

In 1 9 1 9, Theodor Kaluza, an obscure mathematician at the University 
of Konigsberg, had a very strange idea. He wrote it up and sent it to Ein­
stein, who apparently was struck speechless. Kaluza had found a way to 
combine gravity and electromagnetism in a single coherent "unified field 
theory," something that Einstein had been trying to do for many years 
without success. Kaluza's theory was very elegant and natural. There was 
just one disturbing feature: the unification required space-time to have five 
dimensions, not four. Time was the same as always, but space had some­
how acquired a fourth dimension. 

Kaluza had not set out to unify gravity and electromagnetism. For 
some reason best known to him, he had been messing around with five­
dimensional gravity, a kind of mathematician's warmup exercise, working 
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out how Einstein's field equations would look i f  space had that absurd ex­
tra dimension. 

In four dimensions the Einstein equations have ten "components"­
they boil down to ten separate equations describing ten separate numbers. 
These numbers jointly constitute the metric tensor, which describes the 
curvature of space-time. In five dimensions there are fifteen components, 
hence fifteen equations. Ten of them reproduce Einstein's standard four­
dimensional theory, which is no surprise; four-dimensional space-time is 
embedded in five-dimensional space-time, so you would naturally expect 
the four-dimensional version of gravity to be embedded in the five­
dimensional one. What about the remaining five equations? They could 
have been just some peculiar structure with no significance for our own 
world. But they weren't. Instead, they were very familiar, and that's what 
amazed Einstein. Four of Kaluza's remaining equations were precisely 
Maxwell's equations for the electromagnetic field, the ones that hold in 
our four-dimensional space-time. 

The one remaining equation described a very simple kind of particle, 
which played an insignificant role. But no one, least of all Kaluza, had ex­
pected both Einstein's theory of gravity and Maxwell's theory of electro­
magnetism to emerge spontaneously from the five-dimensional analogue 
of gravity alone. Kaluza's calculation seemed to be saying that light is a vi­
bration in an extra, hidden dimension of space. You could put gravity and 
electromagnetism together into a seamless whole, but only by supposing 
that space is really four-dimensional and space-time is five-dimensional. 

Einstein agonized over Kaluza's paper, because there was absolutely no 
reason to imagine that space-time has an extra dimension. But eventually 
he decided that however strange the idea might seem, it was so beautiful, 
and potentially so far-reaching, that it should be published. After dithering 
for two years, Einstein accepted Kaluza's paper for a major physics jour­
nal. Its title was "On the unity of problems of physics." 

All this talk of extra dimensions probably sounds rather vague and mysti­
cal. It is a concept associated with Victorian spiritualists, who invoked the 
fourth dimension as a convenient place to hide everything that didn't make 
sense in the familiar three. Where do spirits live? In the fourth dimension. 
Where does ectoplasm come from? The fourth dimension. Theologians 
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even placed God and His angels there until they realized that the fifth was 
better and the sixth better still, and that finally only an infinite dimension 
would really do for an omniscient and omnipresent entity. 

All great fun, but not terribly scientific. So it is worth digressing to clar­
ify the underlying mathematics. The main point is that the "dimension" of 
some mathematical or physical setup is the number of distinct variables 
needed to describe it. 

Scientists spend a lot of time thinking about variables--quantities that 
are subject to change. Experimental scientists spend even more time 
measuring them. "Dimension," which is just a geometric way to refer to a 
variable, has turned out to be so useful that it is now built into science and 
mathematics as a standard way of thinking and is considered to be entirely 
prosaic and unremarkable. 

Time is a nonspatial variable, so it provides a possible fourth dimen­
sion, but the same goes for temperature, wind speed, or the lifespan of 
termites in Tanzania. The position of a point in three-dimensional space 
depends on three variables-its distances east, north, and upward relative 
to some reference point, using negative numbers for the opposite direc­
tions. By analogy, anything that depends on four variables lives in a four­
dimensional "space," and anything that depends on 1 01 variables lives in 
a 1 01 -dimensional space. 

Any complex system is inherently multidimensional. The weather con­
ditions in your backyard depend on temperature, humidity, three compo­
nents of wind velocity, barometric pressure, intensity of rainfall-that's 
seven dimensions already, and there are plenty of others we might include. 
I bet you didn't realize you had a seven-dimensional backyard. The state of 
the nine (well, eight; alas, poor Pluto!) planets in the solar system is deter­
mined by six variables for each planet-three positional coordinates and 
three components of velocity. So our solar system is a 54- (I mean 48)­
dimensional mathematical object; and many more if you include satellites 
and asteroids. An economy with a million different commodities, each 
having its own price, lives in a million-dimensional space. Electromagnet­
ism, which requires only six extra numbers to characterize the local states 
of the electric and magnetic fields, is child's play by comparison. Exam­
ples like these abound. As science became interested in systems with large 
numbers of variables, it was forced to come to grips with extravagantly 
multidimensional spaces. 
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The formal mathematics o f  multidimensional spaces i s  purely alge­
braic, based on "obvious" generalizations from low-dimensional spaces. 
For example, every point in the plane (a two-dimensional space) can be 
specified by two coordinates, and every point in three-dimensional space 
can be specified by three coordinates. It is a short step to define a point in 
four-dimensional space as a list of four coordinates, and more generally to 
define a point in n-dimensional space as a list of n coordinates. Then n­
dimensional space itself (or n-space for short) is just the set of all such 
points. 

Similar algebraic machinations let you work out the distance between 
any two points in n-space, the angle between any two lines, and so on. 
From there on out, it's a matter of imagination: most sensible geometric 
shapes in two or three dimensions have straightforward analogues in n 
dimensions, and the way to find them is to describe the familiar shapes 
using the algebra of coordinates and then extend that description to n 
coordinates. 

To get a feel for n-space, we must somehow equip ourselves with n­
dimensional spectacles. We can borrow a trick from the English clergyman 
and schoolmaster Edwin Abbott Abbott, who in 1 884 wrote a short book 
called Flatland It is about the adventures of A. Square, who lived in the 
two-dimensional space of a Euclidean plane. Abbott does not tell us what 
the initial "/\' stands for: I am convinced it should be ''Albert,'' for reasons 
explained in my sequel Flatterland, and I will make that assumption here. 
Albert Square, a sensible sort, did not believe in the absurd notion of the 
third dimension until, one fateful day, a sphere passed through his planar 
universe and flung him into realms he could never have imagined. 

Flatland was a satirical look at Victorian society embedded in a parable 
about the fourth dimension based on a transdimensional analogy. It's the 
analogy, not the satire, that concerns us here. Having successfully imag­
ined yourself as a two-dimensional creature living in a plane, blissfully un­
aware of the greater reality of 3-space, it is not so hard to imagine yourself 
as a three-dimensional creature living in 3-space, blissfully unaware of the 
greater reality of 4-space. Suppose Albert Square, sitting happily in Flat­
land, wants to "visualize" a solid sphere. Abbott achieves this by making 
such a sphere pass through the plane of Flatland, moving perpendicular 
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The sphere encounters Flatland. 

to it so that Albert sees its cross-sections. First he sees a point, which 

grows to a circular disk. The disk expands until he is seeing the equator of 

the sphere, after which it shrinks again to a point and then vanishes. 

Actually, Albert sees these disks edge-on, as line segments with graded 

shading, but his visual sense interprets this image as a disk, just as our 

stereo vision interprets a flat image as being solid. 

By analogy, we can "see" a "hypersphere," the four-dimensional analogue 

of a solid sphere, as a point that grows to form a sphere, expands until we 

see the "equator," and then shrinks back to a point before disappearing. 

Could space really have more than three dimensions? Not fancy mathe­

matical fictions corresponding to nonspatial variables, but real physical 
space? After all, how can you fit the fourth dimension in? Everything's 

filled up already. 

If you think that, you didn't listen to Albert Square, who would have ar­

gued exactly the same way about the plane. Ignoring our parochial preju­

dices, it seems that in principle, space might have been 4-dimensional, or 

million-dimensional, or whatever. Everyday observation, however, in­

forms us that in our particular universe the good Lord settled on three di­

mensions for space, plus one for time. 

Or did He? Whatever physics teaches us, one lesson is to be wary of 

everyday observation. A chair feels solid, but it's mostly empty space. 

Space looks flat, but according to relativity it's curved. Quantum physicists 

think that on very small scales space is a kind of quantum foam, mostly 

holes. And devotees of the "many worlds" interpretation of quantum un­

certainty believe our universe is one of an infinite variety of coexisting 

The hypersphere encounters Spaceland. 
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From a d istance (above) , a hosepipe looks 

one-dimensiona l .  From close up (below) it 

has two addit iona l d imens ions. 

universes, and that we occupy just a wafer-thin slice of a vast multiverse. If 
common sense can mislead us about those things, maybe it's wrong about 
the dimensionality of space or time. 
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Kaluza had a simple explanation for the extra dimension his theory as­
signed to space-time. The traditional dimensions point along straight lines, 
long enough to observe, billions of light years long, in fact. The new di­
mension, Kaluza suggested, is very different: it curls up tightly into a circle 
much smaller than an atom. The ripples that constitute light waves can 
move round the circle, because they, too, are much smaller than atoms, but 
matter cannot move in that direction because there isn't enough room. 

This isn't such a silly idea. If you look at a hosepipe from a distance, 
the pipe looks like a curve, which is one-dimensional. Only from close up 
does it become clear that the pipe is really three-dimensional, with a small 
two-dimensional cross-section. This hidden structure in new dimensions 
explains something that you can observe from a distance: how the hose is 
able to carry water. The cross-section just needs to have the right shape, 
with a central hole. Now imagine that the thickness of the hose is less 
than the size of an atom. You would have to look extraordinarily closely 
to notice the extra dimensions. The incredibly thin hosepipe would no 
longer be able to carry water, but anything sufficiently small could still 
travel along it. 

So it may be possible to perceive the effect of extra dimensions without 
perceiving the dimensions themselves. That means that hidden dimen­
sions of space-time are an entirely scientific suggestion: their presence can 
in principle be tested-but by inference, rather than by a direct use of the 
senses. Most scientific tests work by inference-if you could see the cause 
of some phenomenon directly, you wouldn't need theories or experi­
ments. No one has ever seen an electromagnetic field, for example. They 
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have seen sparks and watched compass needles swing to point north, and 
(if they are scientists) they have inferred that a field must be responsible. 

Kaluza's theory gained a certain popularity because it was the only 
known idea that held out hope of a unified field theory. In 1 926, another 
mathematician, Oskar Klein, improved Kaluza's theory with the sugges­
tion that quantum mechanics might explain why that fifth dimension 
curled up so tightly. In fact, its size should be of a similar order of magni­
tude to Planck's constant: the "Planck length" of 1 0-'; meters. 

For a while, physicists were attracted to Kaluza-Klein theory, as it be­
came known. But the impossibility of directly demonstrating the presence 
of that extra dimension preyed on their minds. By definition, 
Kaluza-Klein theory was consistent with every known phenomenon in 
gravitation and electromagnetism. You could never disprove it with stan­
dard experiments. But it didn't really add anything; it didn't predict any­
thing new that could be tested. The same problem bedevils many attempts 
to unify existing laws. What's testable is already known, and what's new 
isn't testable. The initial enthusiasm began to wane. 

The deathblow for Kaluza-Klein theory-not whether it was right, but 
whether it was worth spending precious research time on-was the explo­
sive growth of a much sexier theory, one in which you really could make 
new predictions and do experiments to test them. This was quantum the­
ory, then in its first flush of youth. 
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By the 1 960s, though, quantum mechanics was running out of steam. 
Early progress had given way to deep puzzles and inexplicable observa­
tions. Quantum theory's success was undeniable, and it would shortly lead 
to the "standard model" of fundamental particles. But it was becoming 
ever more difficult to find new questions that had any chance of being an­
swered. Genuinely novel ideas were too hard to test; testable ideas were 
mere extensions of existing ones. 

One very elegant underlying principle had emerged from all the research: 
the key to the structure of matter on very tiny scales is symmetry. But the im­
portant symmetries for fundamental particles are not the rigid motions of 
Euclidean space, not even the Lorentz transformations of relativistic space­
time. They include "gauge symmetries" and "supersymmetries." And there 
are other kinds of  symmetry, too, more like the symmetries studied by 
Galois, which act by permuting a discrete set of objects. 
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How can there be different kinds of symmetry? 
Symmetries always form a group, but there are many different ways in 

which a group can act. It might act by rigid motions such as rotations, by 
permuting components, or by reversing the flow of time. Particle physics 
led to the discovery of a new way for symmetries to act, called gauge sym­
metries. The term is a historical accident, and a better name would be local 
symmetries. 

Suppose that you are traveling in another country-let us call it Dupli­
catia--and you need money. The Duplicatian currency is the pfunnig, and 
the exchange rate is two pfunnigs to the dollar. You find this confusing 
until you notice a very simple and obvious rule for translating dollar trans­
actions into pfunnigs. Namely, everything costs twice as many pfunnigs as 
you would expect to pay in dollars. 

This is a kind of symmetry. The "laws" of commercial transactions are 
unchanged if you double all the numbers. To compensate for the numeri­
cal difference, though, you have to pay in pfunnigs, not in dollars. This 
"invariance under change of monetary scale" is a global symmetry of the 
rules for commercial transactions. If you make the same change through­
out, the rules are invariant. 

But now . . .  Just across the border, in neighboring Triplicatia, the local 
currency is the boodle, and these are valued at three to the dollar. When 
you take a day trip to Triplicatia, the corresponding symmetry requires all 
sums to be multiplied by three. But again the laws of commerce remain in­
variant. 

Now we have a "symmetry" that differs from one place to another. In 
Duplicatia, it is multiplication by two; in Triplicatia, by three. You would 
not be surprised to find that on visiting Quintuplicatia the corresponding 
multiple is five. All of these symmetry operations can be applied simulta­
neously, but each is valid only in the corresponding country. The laws of 
commerce are still invariant, but only if you interpret the numbers accord­
ing to the correct local currency. 

This local rescaling of currency transactions is a gauge symmetry of 
the laws of commerce. In principle, the exchange rate could be different at 
every point of space and time, but the laws would still be invariant pro­
vided you interpreted all transactions in terms of the local value of the 
"currency field." 

:::�!.( 
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Quantum electrodynamics combines special relativity and electromagnet­

ism. It was the first physical unification since Maxwell's, and it is based on 

a gauge symmetry of the electromagnetic field. 
We have seen that electromagnetism is symmetric under the Lorentz 

group of special relativity. This group consists of global space-time symme­
tries; that is, its transformations must be applied consistendy throughout the 
entire universe if we want to preserve Maxwell's equations. However, 
Maxwellian electromagnetism also has a gauge symmetry, which is vital to 

quantum electrodynamics. This symmetry is a change of phase in light. 
Any wave consists of regular wobbles. The maximum size of the wob­

ble is the amplitude of the wave. The time at which the wave hits that 
maximum is called its phase; the phase tells you when and where the peak 

value occurs. What really matters is not the absolute phase of any given 
wave but the difference in phases between two distinct waves. For exam­
ple, if the phase difference of two otherwise identical waves is half the pe­

riod (the time between maximum heights), then one wave hits its 
maximum exacdy out of step with the other one, so the peaks of one co­
incide with the troughs of the other. 

When you walk along the street, you left foot is half a period out of 

phase with your right foot. When an elephant walks along the street, suc­
cessive feet hit the ground at phases 0, lJi, Y2, and � of the full period; first 
the left rear, then the left front, then the right rear, then the right front. You 

can appreciate that if we started counting from ° at a different foot, we 
would get different numbers-but the phase diffirences would still be 0, 14, 

Y2, and %. So relative phases are well defined and physically meaningful. 
Suppose a beam of light is passing through some complicated system 

of lenses and mirrors. The way it behaves turns out not to be sensitive to 
the overall phase. A change of phase is equivalent to a small time delay in 

making observations, or a resetting of the observer's clock. It does not af-

half· period phase shift 

I I 

Effect of a phase shift on a wave. 
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fect the geometry o f  the system or the path o f  the light. Even i f  two light 
waves overlap, nothing changes, provided both waves have their phases 
shifted by the same amount. 

So far, "change phase" is a global symmetry. But if an alien experimen­
talist somewhere in the Andromeda Galaxy changed the phase of light in 
one of its experiments, we would not expect to notice any effect inside a 
terrestrial laboratory. So the phase of light can be changed at will at all 10-
cations in space and time, and the laws of physics should remain invariant. 
The possibility of changing the phase arbitrarily at each point of space­
time, with no global constraint to make the same change everywhere, is a 
gauge symmetry of Maxwell's equations, and it carries over into the quan­
tum version of those equations, quantum electrodynamics. 

A phase shift of a full vibrational period is the same as no phase shift at 
all, and this implies that in the abstract, changing phase is a rotation. So the 
symmetry group involved here-the "gauge group"-is SO(2) , the rota­
tion group in two dimensions. However, physicists like their quantum co­
ordinate transformations to be "unitary"-defined by complex numbers, 
not real ones. Fortunately, SO(2) has another incarnation as the unitary 
group U(1 )-rotations in the complex plane. 

In short: quantum electrodynamics has U ( 1 )  gauge symmetry. 
Gauge symmetries were the clue to the next two unifications of 

physics, the electroweak theory and quantum chromodynamics. Together 
these constitute the "standard model," the currently accepted theory of all 
fundamental particles. Before we can see how this goes, we must explain 
exactly what is being unified: not theories but forces. 

Today's physics recognizes four distinct kinds of force in nature: gravity, 
electromagnetism, the weak nuclear force, and the strong nuclear force. 
They have very different characteristics :  they operate on different scales of 
space and time, some cause particles to attract each other, some cause 
them to repel each other, some do both depending on the particles, and 
some do both depending on how far apart the particles are. 

At first sight, each force bears little resemblance to the others. But be­
neath the surface there are signs that these differences are less important 
than they seem. Physicists have teased out evidence of a deeper unity, sug­
gesting that all four forces have a common explanation. 
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We feel the consequences of  gravity all the time. When we drop a plate 
and it shatters on the kitchen floor, we see gravity pulling it towards the 
Earth's center and the floor getting in the way. The plastic pigs on the 
freezer door (well, that's what you will find in our house) remain in place 
thanks to the magnetic force, which Maxwell showed was merely one as­
pect of the unified electromagnetic force. The electrical aspect runs the 
freezer. Less obviously, the shattering plate also reveals the consequences 
of the electromagnetic force, because this is the main force acting in 
chemical bonds to hold bulk matter together. When the stress on the plate 
becomes too great for the electromagnetic force to hold its molecules to­
gether, it breaks. 

The two remaining forces, which act on the level of the atomic nucleus, 
are not so readily apparent; but without them there would not be any mat­
ter at all, because they hold atoms together. They are why the plate, pigs, 
freezer, floor, and kitchen exist. 

Other types of force could in principle give rise to other types of uni­
verse, and our ignorance of such possibilities is almost total. It is often 
claimed that without the particular forces we have, life would be impossi­
ble, proving that our universe is amazingly finely tuned to make life possi­
ble. This argument is bogus, a wild exaggeration based on too limited a 
view of what constitutes life. Life like ours would be impossible-but it is 
the height of arrogance to assume that our kind of life is the only kind of 
organized complexity that could exist. The fallacy here is to confuse suffi­
cient conditions for life (those aspects of our universe on which our kind 
of life depends) with necessary ones. 

The first of the four forces to be formulated scientifically was gravity. 
As Newton observed, this is an attractive force: any two particles in the 
universe, he said, attract each other gravitationally. The force of gravity is 
long-range: it falls off fairly slowly with distance. On the other hand, the 
gravitational force is much weaker than the other three: a tiny magnet can 
attach a plastic pig firmly to the fridge, even though the entire Earth is try­
ing to pull it off through the force of gravity. 

The next fundamental force to be isolated was electromagnetism, under 
whose influence particles may either attract or repel each other. What dis­
tinguishes the two is whether the particles have the same electric charge or 
the same magnetic polarity. If they do, the force is repulsive; if not, it is at­
tractive. Again, this force is long-range. 
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The nucleus of an atom is assembled from smaller particles-protons 
and neutrons. Neutrons, as the name suggests, have no electric charge, but 
all protons have positive charge. The electromagnetic repulsion among 
protons should cause the nucleus to explode. What holds it together? 
Gravity is too weak-think of the plastic pigs. There must be some other 
force-which physicists labeled the strong nuclear force. 

But if the strong force can overcome electric repulsion, why don't all of 
the protons in the universe get sucked together into one gigantic atomic nu­
cleus? Clearly, the effect of the strong force must fall off rapidly at distances 
greater than the size of the nucleus. So the strong force is short-range. 

The strong force does not explain the phenomenon of radioactive de­
cay, in which atoms of certain elements "spit out" particles and radiation, 
and change to different elements. Uranium, for example, is radioactive and 
eventually turns into lead. So there must be yet another subatomic force. 
This is the weak force, and it is even shorter-range than the strong force: it 
acts only at a distance one-thousandth the size of a proton. 

�!� 
..•.. 

Physics was a lot easier when the only building blocks of matter were pro­
tons, neutrons, and electrons. These "elementary particles" were the com­
ponents of the atom-which, it transpired, did split, even though the 
name means "indivisible." In Niels Bohr's early model, the atom was visu­
alized as a tight collection of protons and neutrons orbited by much 
lighter, dis tant electrons. The proton carried a fixed positive electric 
charge, the electron carried the same amount of charge but negative, and 
the neutron was electrically neutral. 

Later, as quantum theory developed, this solar-system image was re­
placed by a subtler one. The electrons didn't orbit the nucleus as well­
defined particles but kind of smeared themselves around it in interestingly 
shaped clouds. These clouds were best interpreted as clouds of probabil­
ity. If you looked for an electron, you were more likely to find it in the 
cloud's denser regions and less likely to find it in the sparse regions. 

Physicists invented new ways to probe the atom, break it into pieces, 
and probe the inner structure of those pieces. The main method, still in 
use, is to hit it with another atom or particle and watch what flies off. Over 
time-the story is too complicated to tell in detail-more and more dif­
ferent kinds of particle were found. There was the neutrino, which could 



2 3 6  W H Y  B E A U T Y  I S  T R U T H  

pass through a million miles of  lead unhindered and was therefore rather 
hard to detect. There was the positron, like an electron but with the oppo­
site electrical charge, predicted by Dirac's matter/antimatter symmetry. 

As the number of "elementary" particles grew to more than sixty, 
physicists began to seek deeper ordering principles. There were too many 
building blocks for them to be fundamental. Each type of particle could 
be characterized by a series of properties: mass, charge, something called 
"spin" because the particles behaved as though they were spinning around 
some axis (except that this was an outmoded image and whatever spin 
was, it wasn't really that) . The particles did not spin in space, like the Earth 
or a spinning top. They "spun"-whatever that meant-in more exotic di­
mensIons. 

Like everything in the quantum world, most of these features came in 
integer multiples of basic, very tiny amounts-quanta. All electrical 
charges were integer multiples of the charge on a proton. All spins were 
integer multiples of the spin of an electron. It was not clear whether mass 
was similarly quantized; the masses of the fundamental particles were a 
structureless mess. 

Some family resemblances emerged. An important distinction had to 
be made between particles whose spin was an odd integer multiple of the 
spin of the electron, and those whose spin was an even integer multiple. 
The reason was based on symmetry properties; the spins (in those exotic 
dimensions) did different things if you made the particles rotate in space. 
Somehow the exotic dimensions of spin and the prosaic dimensions of 
space were related. 

The odd particles were named fermions and the even ones bosons, af­
ter two giants of particle physics, Enrico Fermi and Satyendranath Bose. 
For reasons that once seemed sensible, the electron spin is defined to have 
value Y2. So bosons have integer spin (even multiples of � are integers) 
and fermions have spins Y2, %, %, and so on, along with their negatives 

- Y2, - %, - %. Fermions obey the Pauli exclusion principle, which says 
that in any prescribed quantum system, two distinct particles cannot be in 
the same state at the same time. Bosons do not obey the Pauli principle. 

Fermions include all of the familiar particles :  the proton, neutron, and 
electron are all fermions. So are more esoteric particles like the muon, 
tauon, lambda, sigma, xi, and omega, all names derived from the Greek al­
phabet. So are three types of neutrino, associated with the electron, muon, 
and tauon. 
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Bosons are more mysterious, with names like pion, kaon, and eta. 
The particle physicists knew that all of these particles existed, and they 

could measure their physical properties. The problem was making sense of 
this apparent mishmash. Was the universe built from whatever happened 
to be to hand? Or was there a hidden plan? 

The upshot of these deliberations was that many supposedly elemen­
tary particles were in fact composite. They were all made from quarks. 
Quarks (the name comes from Finnegans wake) come in six distinct fla­
vors, arbitrarily named: up, down, strange, charm, top, and bottom. They 
are all fermions, with spin lh. Each has an associated antiquark. 

There are two ways to combine quarks. One is to use three ordinary 
quarks, in which case you end up with a fermion. The proton consists of 
two up quarks plus one down quark. The neutron is two down and one up. 
A bizarre particle called the omega-minus is made from three strange 
quarks. The other is to use a quark and an antiquark, which yield a boson. 
They don't annihilate each other because they are kept apart by nuclear 
forces. 

For the electrical charges to work out correctly, the charges on quarks 
cannot be integers. Some have charge 113, some 2h, Quarks come in three 
distinct "colors." That makes 1 8  types of quark, plus 1 8  antiquarks. Oh, 
yes, there's more. We have to add some more particles to "carry" the weak 
nuclear force, which holds the quarks together. The resulting theory, 
which has great mathematical elegance despite the proliferation of parti­
cles, is known as quantum chromodynamics. 

Quantum theory explains all physical forces in terms of exchanges of par­
ticles. Just as the tennis ball holds the two players together at opposite 
ends of the court as long as the game continues, so various particles carry 
the electromagnetic, strong, and weak forces. The electromagnetic force is 
carried by photons. The strong force is carried by gluons, the weak force 
by intermediate vector bosons, otherwise known as "weakons." (Don't 
blame me-I didn't invent these names, which are mostly historical acci­
dents.) Finally, it is widely conjectured that gravity must be carried by a hy­
pothetical particle called the graviton. No one has yet observed a graviton. 

The large-scale effect of all these carrier particles is to fill the universe 
with "fields." Gravitational interactions create a gravitational field, electro­
magnetic ones create an electromagnetic field, and the two nuclear forces 
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together create something called a Yang-Mills field, after the physicists 
Chen Ning Yang and Robert Mills. 

We can summarize the main characteristics of the fundamental forces 
in a kind of physicist's shopping list: 

• Gravity: Strength 6 X 1 0-39, range infinite, carried by gravitons (not 
observed, should have mass 0, spin 2) , forms the gravitational field. 

• Electromagnetism: Strength 1 0 -2, range infinite, carried by photons 
(mass 0, spin 1 ) ,  forms the electromagnetic field. 

• Strongforce: Strength 1 ,  range 1 0 -15 meters, carried by gluons (mass 0, 
spin 1 ) ,  forms one component of the Yang-Mills field. 

• Weak force: Strength 1 0 -6, range 1 0 -1 8  meters, carried by weakons 
(large mass, spin 1 ) ,  forms the other component of the Yang-Mills 
field. 

You may feel that 36 fundamental particles, plus assorted gluons, is not 
a big improvement on sixty or more, but quarks form a highly structured 
family with a huge amount of symmetry. They are all variations on the 
same theme-unlike the wild zoo of particles that physicists had to deal 
with before quarks were discovered. 

The description of fundamental particles in terms of quarks and glu­
ons is known as the standard model. It fits experimental data extremely 
well . Some of the masses of some of the particles have to be adjusted to 
fit observations, but once you've done that, all the other masses slot neatly 
into place. The logic is not circular. 

Quarks are bound together very tightly, and you never see an isolated 
quark. All you can observe are the combinations of twos and threes. Nev­
ertheless, particle physicists have confirmed the existence of quarks indi­
rectly. They're not just a clever numerological variation on the zoo. And to 
those who believe that the universe is at heart beautiful, the symmetry 
properties of quarks clinch it. 
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According to quantum chromodynamics, a proton is made from three 
quarks-two up, one down. If you took the quarks out of a proton, shuf­
fled them, and put them back, you would still have a proton. So the laws 
for protons ought to be symmetric under permutations of their constitu-
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ent quarks. More interestingly, the laws also turn out to be  symmetric un­
der changes to the type of quark. You could turn an up quark into a down 
one, say, and the laws would still work. 

This implies that the actual symmetry group here is not just the group 
of six permutations of three quarks, but a closely related continuous 
group, SU(3) , one of the simple groups on Killing's list. Transformations 
in SU(3) leave the equations for laws of nature unchanged, but they can 
change the solutions to those equations. Using SU(3) you can "rotate" a 
proton into a neutron, for instance. All you have to do is turn all of its 
quarks upside down, so that two up and one down become two down and 
one up. The world of fermions has SU(3) symmetry, and the symmetries 
act by changing one fermion into another. 

Two further symmetry groups contribute to the standard model. The 
gauge symmetries of the weak force, SU(2) , can change an electron into a 
neutrino. SU(2) is another group on Killing's list. And our old friend the 
electromagnetic field has U ( 1 )  symmetry-not the Lorentz symmetries of 
Maxwell's equations, but the gauge (i .e . , local) symmetry of phase 
changes. This group just misses Killing's list because it is not SU( 1 ) ,  but it 
is morally on the list, since it's a very close relative. 

The electroweak theory unified electromagnetism and the weak force 
by combining their gauge groups. The standard model incorporates the 
strong force as well, providing a single theory for all fundamental particles. 
It does this in a very direct manner: it just lumps all three gauge groups to­
gether as SU(3) X SU(2) X U(1 ) .  This construction is simple and straight­
forward but not terribly elegant, and it makes the standard model 
resemble something built out of chewing gum and string. 

Suppose you own a golf ball, a button, and a toothpick. The golf ball 
has spherical symmetry SO(3) , the button has circular symmetry SO(2) , 
and the toothpick has (say) just a single reflectional symmetry 0( 1 ) .  Can 
you find some unified object that has all three types of symmetry? Yes, 
you can: put all three into a paper bag. Now you can apply SO(3) to the 
contents of the bag by rotating the golf ball, SO(2) by rotating the button, 
and 0(1 )  by flipping the toothpick. The symmetry group of the bag's con­
tents is SO (3) X SO(2) x 0(1 ) .  This is how the standard model combines 
symmetries, but instead of using rotations it uses the "unitary transforma­
tions" of quantum mechanics. And it suffers from the same defect: it just 
lumps three systems together and combines their symmetries in an obvi­
ous, and rather trivial, way. 
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A much more interesting way to  combine the three symmetry groups 
would be to build something that contained the same objects but was 
more elegant than a paper bag. Maybe you could balance the toothpick on 
the golf ball and stick a button on the end of it. You could even have a 
whole system of toothpicks, like the spokes of a wheel; put the button at 
the hub, spin the wheel on top of the golf ball. If you were really clever, 
maybe the combined object would have lots and lots of symmetry, say the 
group K(9) .  (There is no such group. I made it up for the sake of this dis­
cussion.) The separate symmetry groups SO(3) , SO(2) , and 0(1 ) might 
with luck be subgroups of K(9) . That would be a far more impressive way 
to unify the golf ball, button, and toothpick. 

Physicists felt the same way about the standard model, and they wanted 
K(9) to be something on Killing's list or very close to it, because Killing's 
groups are the fundamental building blocks of symmetry. So they in­
vented a whole series of Grand Unified Theories, or GUTs, based on 
groups like SU(5) , 0(1 0) ,  and Killing's mysterious exceptional group E6• 

The GUTs seemed to suffer from the same defect as Kaluza-Klein the­
ory-a lack of testable predictions. But then a really interesting prediction 
appeared. It was certainly new, so new that it seemed unlikely to be true, 
but it was testable. All GUTs predict that the proton can be "rotated" into 
an electron or a neutrino. So protons are unstable, and in the long run all 
matter in the universe should decay into radiation. The calculations said 
that on average, the life of a proton should be around 1 029 years, much 
longer than the age of the universe. But individual protons would some­
times decay much sooner, and if you had enough protons, you might spot 
one decaying. 

A big tank of water has more than enough protons for a few to decay 
each year. By the end of the 1 980s there were six experiments running, all 
trying to spot a decaying proton. The biggest tank contained over 3000 tons 
of extremely pure water. No one saw a proton decay. Not one. Which 
meant that the average lifetime is at least 1 032 years. Protons live at least a 
thousand times longer than GUTs predict. GUTs just don't hack it. In retro­
spect, it would have been a bit embarrassing if proton decay had been de­
tected, because something very important is missing from GUTs: gravity. 

Any Theory of Everything has to explain why there are four fundamental 
forces, and why they take the strange forms that they do. This is a bit like 
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trying to find a family resemblance between an elephant, a wombat, a 
swan, and a gnat. 

It would be much easier to organize the four forces if they could all be 
shown to be different aspects of a single force. In biology, this has been 
achieved: elephants, wombats, swans, and gnats are all members of the 
Tree of Life, united by their DNA, distinguished by a lengthy series of 
historical changes to DNA. All four evolved, step by step, from a com­
mon ancestor, which lived a billion or two billion years ago. 

The common ancestor of elephants and wombats is more recent than 
that of, say, elephants and swans. So this divergence constitutes the most 
recent branching of the tree of these four species. Before that, the com­
mon ancestor of elephants and wombats split off from some ancestor of 
the swan. Earlier still, the common ancestor of these three species split 
from that of the gnat. 

Speciation can be viewed as a kind of symmetry-breaking. A single 
species is (approximately) symmetric under any permutation of its organ­
isms; every wombat resembles every other wombat. When there are two 
distinct species-wombats and elephants-you can permute the wombats 
among themselves, and permute the elephants, but you can't change an 
elephant into a wombat without someone noticing. 

The physicists' explanation of the underlying unity of the four forces is 
similar. The role of DNA, however, is played by the temperature of the uni­
verse-that is, its energy level. Although the underlying laws of nature are 
the same at all times, they lead to different behavior at different energies-

g n at swan wom bat elephant 

present 

past 

How fou r  species diverge as t ime passes. 
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gravity strong weak electromagnetic 
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past 

How the fou r  fundamental  forces diverge as 

t ime passes. 

just as the same laws cause water to be solid at low temperatures, liquid at 
medium ones, and a gas at high ones. At very high temperatures, the water 
molecules break up to form a plasma, composed of separate particles. At 
higher temperatures still, the particles themselves break to form a 
quark-gluon plasma. 

When the universe first came into being at the Big Bang, 1 3  billion 
years ago, it was enormously hot. At first, all four forces acted in exactly 
the same way. But as the universe cooled, its symmetry broke, and the 
forces split into individuals with distinguishable characteristics. Our pres­
ent universe, with its four forces, is an imperfect shadow of that elegant 
original-the result of three broken symmetries. 
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I n June 1 972, during the run-up to the U.S. presidential election, a secu­
rity guard at the Watergate complex noticed that a door had been taped 
open. He removed the tape, thinking it must have been left accidentally 
by workmen, but when he returned, someone had put it back. His sus-

picions aroused, the guard informed the police, who caught five men 
breaking into the offices of the Democratic Party's national committee. It 
turned out that the men were associated with President Nixon's reelection 
committee. 

The discovery had little effect on the election itself; Nixon won in a 
landslide. But the story wouldn't go away, and slowly the tentacles of the 
Watergate affair reached higher and higher in the Nixon administration. 
Two reporters from the Washington Post, Bob Woodward and Carl Bern­
stein, pursued the story with dogged persistence, assisted by the clandes­
tine revelations of "Deep Throat." No one knew who he was, but it was 
clear that he had to be a very senior official. In 2005, Deep Throat was re­
vealed as Mark Felt, the second-in-command in the Federal Bureau of 
Investigation. 

The information that Deep Throat leaked to the press was dynamite. 
By April 1 974, Nixon had been forced to ask for the resignations of two 
senior aides. Then it turned out that the president had bugged his own of­
fice, and there were recorded tapes of sensitive conversations. After a le­
gal battle to secure access to the tapes, gaps were found in some of the 
recordings, apparently the result of deliberate erasure. 

The attempt to cover up the relation between the burglary and the White 
House was almost universally perceived as a worse crime than the burglary 
itsel£ The House of Representatives began a formal process that could lead 

2 4 3  
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to the president being impeached-tried for "high crimes and misde­
meanors" before the U.S. Senate, and if found guilty, removed from office. 
When impeachment and conviction became inevitable, Nixon resigned. 

Nixon's opponent in the election was Senator George McGovern. An­
nouncing his candidacy for the Democratic nomination in Sioux Falls, 
South Dakota, McGovern made some prophetic remarks: 

Today, our citizens no longer feel that they can shape their own lives 
in concert with their fellow citizens. Beyond that is the loss of confi­
dence in the truthfulness and common sense of our leaders. The 
most painful new phrase in the American political vocabulary is 
"credibility gap"-the gap between rhetoric and reality. Put bluntly, 
it means that people no longer believe what their leaders tell them. 

Among the minor figures in McGovern's campaign was a would-be 
political journalist whose career would probably have taken off had Mc­
Govern been elected. In that variant of history, politics might have been 
richer, but fundamental physics and advanced mathematics would have 
been much the poorer. In the year 2004 of the history that actually hap­
pened, the journalist was listed by Time magazine as one of the year's one 
hundred most influential people-but not for his journalism. 

Instead, he was listed for his ground breaking contributions to mathe­
matical physics. He is responsible for some of the most original mathemat­
ics in the world-for which he won the Fields Medal, the top honor in 
mathematics, comparable in prestige to a Nobel Prize-but he is not a 
mathematician. He is one of the world's leading theoretical physicists, and 
was awarded the National Medal of Science, but his first degree was in his­
tory. And he is the prime mover, though not quite the original creator, of 
the current front-runner in the effort to unify the whole of physics. He is 
the Charles Simonyi professor of mathematical physics at the Institute for 
Advanced Study in Princeton, where Einstein used to work, and his name 
is Edward Witten. 

Like the great German quantum theorists but unlike poor Dirac, Wit­
ten grew up in an intellectual environment. His father, Louis Witten, is 
also a physicist, working on general relativity and gravitation. Edward was 
born in Baltimore, Maryland, and studied for his first degree at Brandeis 
University. After Nixon's reelection, he went back to academic life, taking 



T H E  P O L I T I C A L  J O U R N A L I S T  2 4 5  

a PhD a t  Princeton University, and embarked on  a career of  research and 
teaching at various American universities. In 1 987 he was appointed to the 
Institute for Advanced Study, where all academic positions focus purely 
on research, and this is where he currently works. 

Witten started research in quantum field theory, the first fruits of ef­
forts to reconcile quantum theory with relativity. Here relativistic effects 
of motion are taken into account, but only in flat space-time. (Gravity, 
which requires curved space-time, is not considered.) In 1 998, in a Gibbs 
lecture, Witten said that quantum field theory "encompasses most of 
what we know of the laws of physics, except gravity. In its seventy years 
there have been many milestones, ranging from the theory of 'antimatter' 
. . .  to a more precise description of atoms . . .  to the 'standard model of 
particle physics.'" He pointed out that having been developed largely by 
physicists, much of it lacked mathematical rigor and so had had little im­
pact on mathematics as such. 

The time was ripe, Witten said, to remedy that shortcoming. Several 
major areas of pure mathematics were effectively quantum field theory in 
disguise. Witten's own contribution, the discovery and analysis of "topo­
logical quantum field theories," had a direct interpretation in terms of 
concepts that various pure mathematicians had invented in quite different 
settings. These included the English mathematician Simon Donaldson's 
epic discovery that four-dimensional space is unique in supporting many 
different "differentiable structures"-coordinate systems in which calcu­
lus can be carried out. Other aspects are a recent breakthrough in knot 
theory, known as the Jones polynomial, a phenomenon called "mirror 
symmetry" in multidimensional complex surfaces, and several areas of 
modern Lie theory. 

Witten made a bold prediction: a major theme in twenty-first-century 
mathematics would be the integration of ideas from quantum field theory 
into the mathematical mainstream: 

One has here a vast mountain range, most of which is still covered 
with fog. Only the loftiest peaks, which reach above the clouds, are 
seen in the mathematical theories of today, and these splendid peaks 
are studied in isolation . . .  Still lost  in the mist is the body of the 
range, with its quantum field theory bedrock and the great bulk of 
the mathematical treasures. 
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Witten's Fields Medal celebrated his uncovering of a few of those hid­

den treasures. Among them was a new and improved proof of the "posi­

tive mass conjecture ," to the effect that a gravitational system with 

positive local mass density must have positive total mass. It may sound ob­

vious, but in the quantum world mass is a subtle concept. The proof of 

this long-sought result, published by Richard Schoen and Shing-Tung Yau 
in 1979, had earned Yau a Fields Medal in 1982. Witten's new, improved 

proof exploited "supersymmetry," the first application of that concept to 

a significant problem in mathematics. 

We can understand supersymmetry in terms of an old puzzle, which asks 

for a cork that can fit into a bottle whose opening may be circular, square, 

or triangular. Amazingly, such shapes do exist, and the traditional answer 
is a cork with a circular base that tapers like a wedge. Viewed from below, 

it looks like a circle; viewed from the front it is a square; viewed from the 

side it is a triangle. A single shape can perform all three tasks because a 

three-dimensional object can have several different "shadows," or projec­

tions, in different directions. 

Now, imagine a Flatlander living on the "floor" of my picture, able to 

observe the projection of the cork onto the floor but unaware of the 

other projections. One day he discovers to his amazement that the circular 

shape has somehow morphed into a square. How can that be? It's cer­

tainly not a symmetry. 
Not in Flatland. But while the Flatlander's back was turned, someone 

living in three dimensions rotated the cork so that its projection onto the 

1 

How supersymmetry works. Left: A cork to fit three 

shapes of hole. Right: Effect of rotating the cork. 
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floor changed to a square. And rotation is a symmetry transformation in 
three dimensions. So a symmetry in a higher dimension can sometimes ex­
plain a rather baffling transformation in a lower dimension. 

Something very similar happens in supersymmetry, but instead of 
changing circles into squares, it changes fermions into bosons. This is 
amazing. It means that you can do calculations with fermions, hit every­
thing with a supersymmetry operation, and deduce results for bosons with 
no extra effort. Or the other way round. 

We expect this kind of thing to happen with genuine symmetries. If 
you stand in front of a mirror and juggle several balls, then whatever hap­
pens on your side of the mirror completely determines what happens on 
the other side. There, an image of you juggles images of the balls. If it 
takes 3.79 seconds to complete one sequence of juggles on the real side of 
the mirror, you know without doing the measurements that it will also 
take 3.79 seconds to complete the corresponding sequence of juggles on 
the other side. The two situations are related by a reflectional symmetry; 
whatever happens in one also happens, reflected, in the other. 

Supersymmetries are not as obvious as this, but they have a similar ef­
fect. They let us deduce features of one type of particle from features of 
an entirely different type of particle. It is almost as if you could reach 
into some higher-dimensional region of the universe and twist a fermion 
into a boson. Particles come in supersymmetric pairs : an ordinary parti­
cle is matched with its twisted version, called a sparticle. Electrons are 
paired with selectrons, quarks with squarks. For historical reasons the 
photon is twinned not with the sphoton but with the photino. There is a 
kind of "shadow world" of sparticles that interacts only weakly with the 
ordinary world. 

This idea makes for elegant mathematics, but the masses of these pre­
dicted shadow particles are too great for them to be observed in experi­
ments. Supersymmetry is beautiful, but it may not be true. But even 
though direct confirmation is out of the question, indirect confirmation is 
still possible. Science mainly checks theories through their implications. 

Witten pursued supersymmetry vigorously, and in 1 984 he wrote an ar­
ticle titled "Supersymmetry and Morse theory." Morse theory is an area 
of topology, named for the pioneer Marston Morse, that relates the 
overall shape of a space to its peaks and valleys. Sir Michael Atiyah, 



2 4 8  W H Y  B E A U T Y  I S  T R U T H  

probably Britain's most distinguished living mathematician, described 
Witten's paper as "obligatory reading for geometers interested in under­
standing modern quantum field theory. It also contains a brilliant proof 
of the classic Morse inequalities . . .  The real aim of the paper is to pre­
pare the ground for supersymmetric quantum field theory [in terms of] 
infinite-dimensional manifolds." Subsequently, Witten applied these 
techniques to other hot topics at the frontiers of topology and alge­
braic geometry. 

It should be obvious that when I said Witten is not a mathematician, I 
did not mean he lacks mathematical ability--quite the reverse. Arguably 
no one on the planet has more mathematical ability. But in Witten's case it 
is complemented by an amazing physical intuition. 

Unlike mathematicians, physicists are seldom shy about employing 
physical intuition to paper over any gaps in mathematical logic. Mathe­
maticians have learned to regard leaps of faith with suspicion, however 
strong the supporting evidence may be: to them, proof is all. Witten is un­
usual in that he can relate his intuition to mathematics as mathematicians 
understand it. Atiyah puts it like this :  "His ability to interpret physical 
ideas in mathematical form is quite unique. Time and again he has sur­
prised the mathematical community by his brilliant application of physical 
insight leading to new and deep mathematical theorems." 

But there is a flipside to this intuitive prowess. Many of Witten's most 
important ideas, being derived from physical principles or analogies, were 
arrived at without proofs, and some still lack proofs today. It's not that he 
can't do proofs-as his Fields Medal demonstrates-but he can make 
leaps of logic that lead to deep and correct mathematics without seeming 
to need proofs. 

The big question is, does Witten's wonderfully elegant mathematics have 
anything to do with fundamental physics? Or has the search for beauty 
headed down a mathematical dead end, losing any connection with physi­
cal truth? 

By 1 980, physicists had unified three of the four forces of nature: elec­
tromagnetic, weak, and strong. But Grand Unified Theories said nothing 
about gravity. The force that we experience most directly in everyday life, 
which literally keeps our feet on the ground, was embarrassingly absent 
from the synthesis. 
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I t  was easy enough to  write down combined theories of gravity and 
quantum theory that looked sensible. But whenever anyone tried to solve 
the resulting equations, they got nonsense. Typically, numbers that ought 
to represent reasonable physical quantities were infinite. An infinity in a 
physical theory is a sign that something is wrong. It was an infinity in the 
radiation law that inspired Planck to quantize light. 

Some physicists became convinced that the main source of the infini­
ties was the ingrained habit of treating particles as points. A point-loca­
tion without size-is a mathematical fiction. Quantum particles were 
probabilistic fuzzed-out points, but that didn't cure the disease; something 
more drastic was needed. Even in the 1 970s a few pioneers had begun to 
think that particles might more sensibly be modeled as tiny vibrating 
loops-"strings." In the 1 980s, when supersymmetry got in on the act, 
these mutated into superstrings. 

One could write an entire book about superstrings, and several people 
have, but we can manage with a rough hand-waving description. I want to 
focus on four features: the way relativistic and quantum pictures are com­
bined, the need for extra dimensions, the interpretation of quantum states 
as vibrations in those extra dimensions, and the symmetries of the extra 
dimensions--or, more accurately, of various fields that live in them. 

Our starting point is Einstein's idea of representing the trajectory of a 
particle in space-time as a curve, which he called its world line. Essentially, 
this is the curve that the particle traces in space-time as it moves. In rela­
tivity, world lines are smooth curves, because of the form of Einstein's 
field equations. They do not branch, because in relativity the future of any 
system is completely determined by its past, indeed by its present. 

There is an analogous concept in quantum field theory called a Feynman 
diagram. Feynman diagrams depict the interaction of particles in a rather 
schematic space-time. For example, the left-hand picture (next page) is the 
Feynman diagram for an electron that emits a photon that is then captured 
by a second electron. It is traditional to use wiggly lines for photons. 

The Feynman diagram is a bit like a relativistic world line, but it has 
sharp corners and it branches. In 1 970, it occurred to Yoichiro Nambu that 
if the assumption that particles are points is replaced by the assumption 
that they are tiny loops, then Feynman diagrams can be converted into 
smooth surfaces-worldsheets-as in the right-hand picture. A worldsheet 
can be interpreted as a world line in a modified space-time, with an extra di­
mension for the loops to live in. 
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electron 1 electron 2 

(Left) Feynman diagram for imeraaing particles. (Right) The corre­

sponding worldsheet. sliced into strings. 

The great thing about loops-aside from not being points-is that they 

can vibrate. Perhaps each vibrational pattern corresponded to a quantum 

state. That would explain why quantum states come in whole-number 

multiples of some basic quantity-for example spin, which is always an 

integer multiple of Y2. The number of waves that fit into the loop has to 

be a whole number. In a violin string, these different patterns are the fun­

damental note and its higher harmonics. So quantum theory becomes a 

kind of music, played with superstrings instead of violin strings. 

Nambu's idea did not eome out of the blue. It had its roots in a remark­

able formula derived by Gabriele Veneziano in 1968, which showed that 

apparently distinct Feynman diagrams represent the same physical 

process, and that any failure to take that into account leads to wrong an­

swers in quantum field theory calculations. Nambu noticed that when the 

Feynman diagram is surrounded by tubes, different diagrams yield net­

works of tubes with the same topology. That is, these networks can be de­

formed into each other. So Veneziano's formula seemed to be related to 

the topological properties of the tubes. 

00000 

888�� 
space 

.. 

1 extra 
dimension 

Strings poke out of ordinary space-time into new 

dimensions. 
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This, in turn, hinted that quantum particles, with their discrete quantum 
numbers like charge, might be topological features of a smooth space­
time. Mathematicians had already observed the tendency of basic topo­
logical properties-such as the number of holes in a surface-to be 
discrete. It all seemed to fit. But as always, the devil was in the detail, and 
the detail was devilish. String theory was the first attempt to get the detail 
in agreement with the real world. 

String theory did not start out as a possible route to a Theory of Everything 
but as a proposal to explain the particles collectively known as hadrons. 
These include most of the common particles found in the atomic nucleus, 
such as the proton and neutron, together with a host of more exotic parti­
cles. However, the theory had a flaw: it predicted the existence of a particle 
with zero mass and spin 2, which had never been observed (and still hasn't) . 
Additionally, it failed to predict any particles with spin lh-and rather a lot 
of hadrons, including the proton and neutron, have spin Y2. It was like a 
midsummer weather forecast that predicts hailstones a foot across but has 
nothing to say about whether the temperature will be warm. Physicists were 
unimpressed. In 1 974, when quantum chromodynamics came along and ex­
plained all known hadrons, and even successfully predicted a new one, the 
omega-minus, the fate of string theory seemed sealed. 

At that point, however, John Schwarz and Joel Scherk noticed that 
string theory'S unwanted zero-mass spin-2 particle might be the long­
sought graviton, the hypothetical particle believed to carry the force of 
gravity. Might string theory be a quantum theory of gravity, rather than 
hadrons? If so, it would be an attractive contender for a Theory of Every­
thing-well, for a Theory of Many Things, because there are many parti­
cles that are not hadrons. 

At this point, supersymmetry came into play, because it converts 
fermions into bosons. Hadrons include particles of both kinds, but other 
particles, such as the electron, are not hadrons. If supersymmetry could 
be incorporated into string theory, then a number of new particles would 
automatically come within the theory's grasp-carried along by super­
symmetric partners that were already part of the theory. 

The combined theory, developed by Pierre Ramond, Andre Neveu, and 
Schwarz, was superstring theory. This theory did include spin-lh particles, 
and it eliminated a nasty feature of ordinary string theory, a particle that 
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goes faster than light. The presence of  such a particle in a theory i s  now 
seen as evidence that it is unstable, which rules it out. 

From 1 980 onward, Michael Green, a British theoretical physicist, 
worked out more and more of the mathematics of superstrings, using 
techniques from Lie group theory and topology, and it quickly became 
clear that whatever its physical credentials, superstring theory possessed 
extraordinary mathematical beauty. The physics remained obstinate: in 
1 983, Luis Alvarez-Gaume and Witten discovered a new snag with string 
theories, including superstrings and even good old quantum field theory. 
Namely, these theories normally possess anomalies. An anomaly occurs 
when the process of converting a classical system to its quantum analogue 
changes an important symmetry. 

Green and Schwarz had discovered that very occasionally, the anom­
alies miraculously disappear, but only if space-time has 26 dimensions (in 
the first version of the theory, called bosonic string theory) or 1 0  dimen­
sions (in later modifications) .  Why? In their calculations for bosonic string 
theory, the mathematical terms that would create an anomaly are multi­
plied by d - 26, where d is the dimension of space-time. So these terms 
vanish precisely when d = 26. Similarly, in the modified version, the factor 
becomes d -1 0. Time always remains one-dimensional, but space some­
how acquires an extra 6 or 22 dimensions. Schwarz put it this way: 

In 1 984 Michael Green and I did a calculation for one of these su­
perstring theories to see whether, in fact, this anomaly occurred or 
not. What we discovered was quite surprising to us. We found that, 
in general, there was indeed an anomaly that rendered the theory un­
satisfactory. Now there was freedom to choose the particular sym­
metry structure that one used in defining a theory in the first place. 
In fact, there were an infinite number of possibilities for these sym­
metry structures. However, for just one of them the anomaly magi­
cally cancelled out of  the formulae, whereas for all the others it 
didn't. So amid this infinity of possibilities, just one unique one was 
being picked out as being potentially consistent. 

If you were prepared to ignore the weird numbers 1 0  or 26, this discov­
ery was very exciting. It suggested that there might be a mathematical rea­
son for space-time to have a particular number of dimensions. It was 
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disappointing that the number was not four, but it was a start. Physicists 
had always wondered why space-time has the dimensions it does; now it 
looked as though there might be a better answer to that question than, 
"well, it could be anything, but in our universe it's four." 

Perhaps other theories would lead to a four-dimensional space-time. It 
would have been ideal, but nothing along those lines seemed to work, and 
the funny dimensions refused to go away. So maybe they were there. This 
was an old idea of Kaluza's: space-time might have extra dimensions that 
we are unable to observe. If so, the strings would remain one-dimensional 
loops, but those loops would vibrate in an otherwise invisible higher­
dimensional space. The quantum numbers associated with the particles, 
like charge or charm, would be determined by the form of the vibrations. 

A basic question was, what do the hidden dimensions look like? What 
shape is space-time? 

At first, physicists hoped the extra dimensions would form some sim­
ple shape like the 6-dimensional analogue of a torus. But in 1985, Philip 
Candelas, Gary Horowitz, Andrew Strominger, and Witten reasoned that 
the most suitable shape would be a so-called Calabi-Yau manifold. There 
are tens of thousands of these shapes; here is a typical one: 

A Calabi-Yau manifold (schematic). 
Credit: Andrew I Hanson, Professor and 

Chair, Indiana University 

The great advantage of Calabi-Yau manifolds is that the supersym­
metry of 10-dimensional space-time is inherited by the ordinary four­
dimensional space-time that underlies it. 

For the first time, the exceptional Lie groups were taking on a promi­
nent role in frontier physics, and this trend accelerated. Around 1990, 
there seemed to be five possible types of superstring theory, all with 
space-time dimension equal to 10. The theories are called Type 1, Types 
IIA and lIB, and "heterotic" types HO and HE. Interesting gauge symme­
tr y groups turn up; for example, in Types I and HO we find SO(32), the 
rotation group in 32-dimensional space, and in Type HE the exceptional 
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Ue group Es  turns up a s  Es  X Es, two distinct copies acting in two differ­
ent ways. 

The exceptional group G2 also makes an appearance in the latest twist 
to the story, which Witten calls M-theory. The "M," he says, stands for 
magic, mystery, or matrix. M-theory posits an l l -dimensional space-time, 
which unifies all five of the 1 0-dimensional string theories, in the sense 
that each can be obtained from M -theory by fixing some of its constants 
to particular values. In M-theory, Calabi-Yau manifolds are replaced by 7-
dimensional spaces known as G2-manifolds, because their symmetries are 
closely related to Killing's exceptional Lie group G2• 

At the moment there is a bit of a backlash against string theory; not on the 
grounds that it is known to be wrong, but on the grounds that it's not yet 
known to be right. Several prominent physicists, especially experimental­
ists, have never had much truck with superstrings anyway-mostly be­
cause it didn't give them anything to do. There were no new phenomena to 
observe, no new quantities to measure. 

I'm not wedded to superstrings as the key to the universe, but I think 
this criticism is unfair. String theorists are being asked to prove their inno­
cence, whereas normally it would be up to the critics to prove their guilt. It 
takes a lot of time and effort to develop radically new ways of thinking 
about the physical world, and string theory is technically very difficult. In 
principle, it can make new predictions about our world; the big problem is 
that doing the necessary sums is extraordinarily hard. The same complaint 
could have been made about quantum field theory 40 years ago, but even­
tually the sums got done, through a combination of better computers and 
better mathematics, and the agreement with experiment turned out to be 
better than we find anywhere else in science. 

Moreover, much the same charge can be leveled at almost any hopeful 
Theory of Everything, and paradoxically, the better it is, the harder it will 
be to prove correct. The reason is inherent in the nature of a Theory of 
Everything. In order to be successful, it must agree with quantum theory 
whenever it is applied to any experiment whose results are consistent with 
quantum theory. It must also agree with relativity whenever it is applied to 
any experiment whose results are consistent with relativity. So the Theory 
of Everything is obliged to pass every experimental test yet devised. Asking 
for a new prediction that distinguishes the Theory of Everything from 
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conventional physics is rather like asking for something that yields results 
identical to those predicted by theories describing all known physical phe­
nomena, yet is different. 

Of course, eventually string theory will have to make a new prediction, 
and be tested against observations, to make the transition from speculative 
theory to real physics. The need to agree with everything currently known 
does not rule out such predictions, it just explains why they don't come 
easily. Some tentative proposals for critical experiments already exist. For 
instance, recent observations of distant galaxies indicate that the universe 
is not only expanding, but expanding increasingly fast. Superstring theory 
offers a simple explanation-gravity is leaking away into those extra di­
mensions. However, there are other ways to explain this particular effect. 
What is clear is that if the theorists all stop investigating superstring 
physics, we will never have a chance to find out whether the theory is cor­
rect. It takes time and effort to come up with the crucial experiments, 
even if they exist. 
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I don't want to leave the impression that when it comes to unifying quan­
tum theory with relativity, superstrings are the only game in town. There 
are many competing proposals-though they all suffer from the same lack 
of experimental support. 

One idea, known as "noncommutative geometry," is the brainchild of 
the French mathematician Alain Connes. It rests on a new concept of the 
geometry of space-time. Most unifications start with the idea that space­
time is some extension of Einstein's relativistic model, and try to make the 
fundamental particles of subatomic physics fit in somehow. Connes does 
the opposite. He starts from a mathematical structure known as a non­
commutative space, which contains all of the symmetry groups that arise 
in the standard model, and then deduces features similar to relativity. The 
mathematics of such spaces traces back to Hamilton and his noncommu­
tative quaternions, but is extensively generalized and modified. Once 
again, though, this alternative theory is firmly rooted in Ue group theory. 

Another intriguing idea is "loop quantum gravity." In the 1 980s, the 
physicist Abhay Ashtekar worked out how Einstein's equations would 
look in a quantum setting where space is "grainy." Lee Smolin and Carlo 
Ravelli developed his ideas, leading to a model of space that is rather like 
medieval chain mail-constructed from very tiny lumps about 1 0 -35 
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An electron represented as a braid. 

meters across, joined by links. They noticed that the detailed structure of 

the chain mail can get very complex as the links become knotted or 

braided together. IIowever, it was not clear what these possibilities meant. 

In 2004, Sundance Bilson-Thompson discovered that some of these 

braids exactly reproduce the rules for combining quarks. The electric 

charge of the quark is reinterpreted in terms of the topology of the asso­

ciated braid, and the combination rules follow from simple geometric op­
erations with braids. This idea, still in its infancy, produces most of the 

particles observed in the standard model. It is the latest in a series of spec­

ulative proposals that matter-here realized as particles-might be a con­
sequence of "singularities" in space, such as knots, localized waves, or 

more complicated structures where space ceases to be smooth and regu­

lar. If Bilson-Thompson is right, matter is just twisted space-time. 

Mathematicians have been studying the topology of braids for many 

years and have long known that braids themselves form a group, the braid 

group. The operation of "multiplication" arises when two braids are joined 

end to end-much as we joined permutations end to end when discussing 
Ruffini's approach to the quintic. Yet again, physics is building on preexist­

ing mathematical discoveries, mostly made "for their own sake" because 
they looked interesting. And yet again, a key ingredient is symmetry. 

" . .  " 
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In the latest version of superstrings, the biggest problem is an embarrass­
ment of riches. Instead of making no predictions, the theory makes too 
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many. The "vacuum energy"-the energy content o f  empty space-can 
be almost anything, depending on how the strings wrap around inside the 
extra dimensions of space. The number of ways for this to happen is gi­
gantic-around t 0 5()(). Different choices yield different values for the vac­
uum energy. 

As it happens, the observed value is very, very small, around 1 0-1 20, but 
it is not zero. 

According to the conventional "fine-tuning" story, this particular value 
is exactly right for life to exist. Anything larger than t o-1 1 8  makes local 
space-time explode; anything smaller than 1 0-120 and space-time contracts 
in a cosmic crunch and disappears. So the "window of opportunity" for 
life is very small. By a miracle, our universe sits neatly within it. 

The "weak anthropic principle" points out that if our universe were not 
constituted the way it is, we wouldn't be here to notice, but that leaves 
open the question why there is a "here" for us to occupy. The "strong an­
thropic principle" says that we're here because the universe was designed 
specially for life to exist-which is mystical nonsense. No one actually 
knows what the possibilities would be if the vacuum energy were 
markedly different from what it is. We know a few things that would go 
wrong-but we have no idea what might go right instead. Most of the 
fine-tuning arguments are bogus. 

In 2000, Raphael Bousso and Joseph Polchinski proposed a different 
answer, using string theory and taking advantage of those 1 0500 possible 
values for the vacuum energy. Although 1 0-1 20 is very small, the possible 
vacuum energy levels are spaced about 1 0-5()() units apart, which is even 
smaller. So plenty of string theories give vacuum energies in the "right" 
range. The probability that a randomly chosen one will do that is s till neg­
ligible, but Bousso and Polchinski pointed out that this is irrelevant. Even­
tually, the "right" vacuum energy will inevitably occur. The idea is that the 
universe explores all possible string theories, sticking with any given one 
until it causes that universe to come to bits, and then "tunneling" quan­
tum-mechanically to some other string theory. If you wait long enough, 
then at some stage the universe acquires a vacuum energy that happens to 
be in the range suitable for life. 

In 2006, Paul Steinhardt and Neil Turok proposed a variation on the 
"tunneling" theory: a cyclic universe that expands in a Big Bang and 
contracts in a Big Crunch, repeating this behavior every trillion years or 
so. In their model, the vacuum energy decreases in each success ive 
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cycle, so that eventually the universe ha s  a very small, bu t  nonzero, 
vacuum energy. 

In either model, a universe whose vacuum energy is low enough will 
hang around for a very long time. Conditions are suitable for life to arise, 
and life has plenty of time to evolve intelligence, and to wonder why it's 
there. 



1 5  

R MUO O lf Of MRTHfMRTICIRHS 

R gaggle of geese, a pride of lions, a charm of finches, an exaltation of 
skylarks . . .  what is the collective noun for mathematicians? A mag­
nificence of mathematicians? Too smug. A mystification of mathe­
maticians? Too close to the mark. Having had many opportunities to 

observe the behavior of the mathematical species when congregated in 
large herds, I think that the most apt word is "muddle." 

One such muddle invented one of the most bizarre structures in the 
entire subject, and discovered a hidden unity behind its puzzling facade. 
Their discoveries, mainly obtained by pottering around and seeing what 
turned up, are beginning to infiltrate theoretical physics, and they may just 
hold the key to some of the more curious features of superstrings. 

The mathematics of superstrings is so new that most of it has not been 
invented yet. But ironically, mathematicians and physicist have just discov­
ered that superstrings, at the frontiers of modern physics, seem to have a 
curious relationship to a bit of Victorian algebra so old-fashioned that it is 
seldom mentioned in university mathematics courses. This algebraic in­
vention is known as the octonions, and it is the next structure in line after 
real numbers, complex numbers, and quaternions. 

Octonions were discovered in 1 843, published by someone else in 
1 845, and ever afterward credited to the wrong person-but that didn't 
matter, since nobody took any notice. By 1 900 they had fallen into obscu­
rity even in mathematics. They experienced a brief revival in 1 925 when 
Wigner and von Neumann tried to make them the basis of quantum me­
chanics, but then fell back into obscurity when the attempt failed. In the 
1 980s they resurfaced as a potentially useful gadget in string theory. In 

2 5 9  
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1 999 they turned up  a s  a crucial ingredient in  1 0- and i i -dimensional su­
perstring theory. 

Octonions tell us that there is something very strange about the num­
ber 8, and something even stranger about the physics of space, time, and 
matter. A Victorian whimsy has been reborn as the key to deep mysteries 
on the common frontier of mathematics and physics-especially the be­
lief that space-time may have more dimensions than the traditional four, 
and that this is how gravity and quantum theory fit together. 

··:;;·l·�·· 
....•..... 

The tale of the octonions lives in the heady realms of abstract algebra, 
and it is the topic of a beautiful mathematical survey published in 2001 by 
the American mathematician John Baez. I have drawn heavily on Baez's 
insights here. I'll do my best to convey the bizarre yet elegant wonders that 
inhabit this curious interface between mathematics and physics. As with 
the ghost of Hamlet's father, a disembodied voice beneath the stage, 
much of the mathematical action must happen out of sight of the audi­
ence. Bear with me, and don't worry too much about the odd piece of un­
explained jargon. Sometimes we just need a convenient word to keep track 
of the main players. 

A few reminders may help to set the scene. The step-by-step expansion 
of the number system has woven in and out of our tale of the quest for 
symmetry. The first step was the discovery (or invention) in the mid­
sixteenth century of complex numbers, in which -1 has a square root. Un­
til that time, mathematicians had thought that numbers were God-given, 
unique, and done. No one could contemplate inventing a new number. But 
around 1 550, Cardano and Bombelli did just that, by writing down the 
square root of a negative number. It took about 400 years to sort out what 
the thing meant, but only 300 to convince mathematicians that it was too 
useful to be ignored. 

By the 1 800s, Cardano and Bombelli's baroque concoction had crystal­
lized into a new kind of number, with a new symbol: i. Complex numbers 
may seem weird, but they turn out to be a marvelous tool for understand­
ing mathematical physics. Problems of heat, light, sound, vibration, elas­
ticity, gravity, magnetism, electricity, and fluid flow all succumb to the 
complex weaponry-but only for physics in two dimensions. 

Our own universe, however, has three dimensions of space-or so we 
thought until recently. Since the two-dimensional system of complex 
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numbers i s  s o  effective for two-dimensional physics, might there b e  an 
analogous three-dimensional number system that can be used for genuine 
physics? Hamilton spent years trying to find one, with absolutely no suc­
cess. Then, on 16 October 1 843, he had a flash of insight: don't look in 
three dimensions, look in four, and carved his equations for quaternions 
into the stonework of Brougham Bridge. 

�1� 
......•...... 

Hamilton had an old friend from college, John Graves, who was an alge­
bra buff It was probably Graves who got Hamilton excited about exten­
sions of the number system in the first place. Hamilton wrote his buddy a 
long letter about quaternions the day after he had vandalized the bridge. 
Graves was initially perplexed, and wondered how legitimate it was to in­
vent multiplication rules off the top of one's head. "I have not yet any 
clear views as to the extent to which we are at liberty arbitrarily to create 
imaginaries, and to endow them with supernatural properties," he wrote 
back. But he also saw the potential of the new idea and wondered how far 
it might be pushed: "If with your alchemy you can make three pounds of 
gold, why stop there?" 

It was a good question, and Graves set about answering it. Within two 
months he wrote back to say that he had found an eight-dimensional num­
ber system. He called it the "octaves." Associated with it was a remarkable 
formula about sums of eight squares, to which I will shortly return. He 
tried to define a 1 6-dimensional number system, but met what he called an 
"unexpected hitch." Hamilton said that he would help to bring his friend's 
discovery to public attention, but he was too busy exploring quaternions 
to do so. Then he noticed a potential embarrassment: multiplication of 
octaves does not obey the associative law. That is, the two ways to form 
products of three octaves, (ab)c and a(bc) ,  are usually different. After much 
soul-searching, Hamilton had been willing to dispense with the commuta­
tive law, but throwing away the associative law might be going too far. 

Now Graves had some serious bad luck. Before he could publish, Cay­
ley independently made the same discovery, and in 1 845 he published it as 
an addendum to an otherwise awful paper on elliptic functions-so rid­
dled with errors that it was removed from his collected works. Cayley 
called his system "octonions." 

Graves was unhappy at being beaten to publication, and it so happened 
that a paper of his own was shortly due to be published in the journal 
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where Cayley had announced his discovery. So  Graves added a note to his 
paper, pointing out that he had come across the same idea two years be­
fore, and Hamilton backed him up by publishing a brief note confirming 
that his friend should be granted priority. Despite the record being set 
straight, the octonions quickly acquired the name "Cayley numbers," 
which is still widely used. Many mathematicians now use Cayley's termi­
nology, calling the system "octonions," but give credit to Graves. It's a bet­
ter name than "octaves" anyway, because it resembles "quaternions." 

The algebra of octonions can be described in terms of a remarkable di­
agram known as the Fano plane. This is a finite geometry composed of 
seven points joined in threes by seven lines, and it looks like this: 

The Fano p lane, a geometry with 

seven points and seven l i nes. 

One line has to be bent into a circle to draw it in the plane, but that 
doesn't matter. In this geometry, any two points are joined by a line, and 
any two lines meet at a point. There are no parallel lines. The Fano plane 
was invented for a totally different purpose, but it turned out to encapsu­
late the rules for multiplying octonions. 

The octonions have eight units: the ordinary number 1 ,  and seven oth­
ers called el

' 
e2, e3, e4, es

' 
e6, and eT The square of any of these is -1 . The 

diagram determines the multiplication rule for the units. Suppose you 
want to multiply e3 by eT Look in the diagram for points 3 and 7 and find 
the line that joins them. On it, there is a third point, which in this case is 
1 .  Following the arrows, you go from 3 to 7 to 1 ,  so e3e7 = e l •  If the or­
dering is back to front, throw in a minus sign: e7e3 = -el •  Do this for all 
possible pairs of units, and you know how to do arithmetic with octon­
ions. (Addition and subtraction are always easy, and division is deter­
mined by multiplication.) 
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Graves and Cayley didn't know about this connection with finite geom­
etry, so they had to write out a multiplication table for octonions. The 
Fano plane pattern was discovered later. 

For many years, the octonions were merely a minor curiosity. Unlike 
quaternions, they had no geometrical interpretation and no application in 
science. Even within pure mathematics, nothing seemed to follow from 
them; no wonder they fell into obscurity. But all this would change with 
the realization that the octonions are the source of the most bizarre alge­
braic structures known to mathematics. They explain where Killing's five 
exceptional Lie groups-G2, F4, E6, E7, and Es-really come from. And 
the group Es, the largest of the exceptional Lie groups, shows up twice in 
the symmetry group that forms the basis of l O-dimensional string theory, 
which has unusually pleasant properties and is thought by many physicists 
to be the best candidate yet for a Theory of Everything. 

If we agree with Dirac that the universe is rooted in mathematics, then 
we could say that a plausible Theory of Everything exists because Es ex­
ists, and Es exists because the octonions exist. Which opens up an intrigu­
ing philosophical possibility: the underlying structure of our universe, 
which we know to be very special, is singled out by its relationship to a 
unique mathematical object: the octonions. 

Beauty is truth, truth beauty. The Pythagoreans and Platonists would 
have loved this evidence of the pivotal role of mathematical patterns in 
the structure of our world. The octonions have a haunting, surreal mathe­
matical beauty, which Dirac would have seized upon as a reason why l O­
dimensional string theory has to be true. Or, if unhappily proved false, is 
nevertheless more interesting than whatever is true. But we have learned 
that beautiful theories need not be true, and until the verdict on super­
strings is in, this possibility must remain pure conjecture. 

Whatever its importance in physics, the circle of ideas surrounding the 
octonions is pure gold for mathematics. 

The connection between the octonions and the exceptional Lie groups is 
just one of many strange relationships between various generalizations of 
the quaternions and the frontiers of today's physics. I want to explore 
some of these connections in enough depth for you to appreciate how re­
markable they are. And I'm going to start with some of the oldest excep­
tional structures in mathematics, formulas about sums of squares. 
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One such formula derives naturally from the complex numbers. Every 
complex number has a "norm," the square of its distance from the origin. 
The Pythagorean theorem implies that the norm of x + iy is X- + f. The 
rules for multiplying complex numbers, as laid down by Wessel, Argand, 
Gauss, and Hamilton, tell us that the norm has a very pretty property. If 
you multiply two complex numbers together, then the norms multiply too. 
In symbols, (,x-Z + f) (u2 + tl) = (xv + yu) 2 + (xu - YV)2. A sum of two 
squares times a sum of two squares is always a sum of two squares. This 
fact was known to the Indian mathematician Brahmagupta around 650, 
and to Fibonacci in 1 200. 

The early number theorists were fascinated by sums of two squares, be­
cause they distinguished two different types of prime number. It is easy to 
prove that if an odd number is the sum of two squares, then it must be of 
the form 4k + 1 for some integer k. The remaining odd numbers, which 
are of the form 4k + 3, cannot be represented as the sum of two squares. 
However, it is not true that every number of the form 4k + 1 is a sum of 
two squares, even if we allow one of the squares to be zero. The first ex­
ception is the number 21 . 

Fermat made a very beautiful discovery: these exceptions can never be 
prime. He proved that on the contrary, every prime number of the form 
4k + 1 is a sum of two squares. By applying the above formula for multi­
plying sums of two squares together, it then follows that an odd number is 
a sum of two squares if and only if every prime factor of the form 4k + 3 
occurs to an even power. For instance, 45 = 32 + 62 is a sum of two 
squares. Its prime factorization is 3 X 3 X 5, and the prime factor 3, which 
has the form 4k + 3 with k = 0, occurs to the power two--an even num­
ber. The other factor, 5, occurs to an odd power, but that's a prime of the 
form 4k + 1 (with k = 1 ) ,  so it doesn't cause any trouble. 

On the other hand, the exception 21 is equal to 3 X 7, which are both 
primes of the form 4k + 3, and here each occurs to the power 1 ,  which is 
odd-so that's why 21 doesn't work. Infinitely many other numbers don't 
work for the same reason. 

Later, Lagrange used similar methods to prove that every positive 
whole number is a sum of four squares (zero permitted) . His proof used 
a clever formula discovered by Euler in 1 750. It is similar to the one 
above, but for sums of four squares. A sum of four squares times a sum 
of four squares is itself a sum of four squares. There can be no such for­
mula for sums of three squares, because there exist pairs of numbers that 
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are both sums o f  three squares but whose product i s  not. However, in 
1 81 8  Degen found a product formula for sums of eight squares. It is the 
same formula that Graves discovered using octonions. Poor Graves-his 
discovery of octonions, which was original, was credited to someone 
else; his other discovery, the eight-squares formula, turned out not to be 
original. 

There is also a trivial product formula for sums of one square-that is, 
squares. It is x2j = (xy)2. This formula does for real numbers what the 
two-squares formula does for complex numbers : it proves that the norm 
is "multiplicative"-the norm of a product is the product of the norms. 
Again, the norm is the square of the distance from the origin. The nega­
tive of any number has the same norm as its positive. 

What of the four-squares formula? It does the same thing for quater­
nions. The four-dimensional analogue of the Pythagorean theorem (yes, 
there is such a thing) tells us that a general quaternion x + iy + jz + kw has 
norm x2 + j + :i + uf, a sum of four squares. The quaternionic norm is 
also multiplicative, and this explains Lagrange's four-squares formula. 

You will probably be ahead of me by now. Degen's eight-squares for­
mula has a similar interpretation for octonions. The oct onion norm is 
multiplicative. 

Something very curious is going on here. We have four types of ever­
more-elaborate number system: the reals, complexes, quaternions, and oc­
tonions. These have dimensions 1 ,  2, 4, and 8. We have formulas that say 
that a sum of squares times a sum of squares is a sum of squares: these 
apply to 1 , 2, 4, or 8 squares. The formulas are closely related to the num­
ber systems. More intriguing still is the pattern of the numbers. 

1 ,  2, 4, 8--what comes next? 
.. �.!�., 

..
..

•
..

.. 

If the pattern continued, we would confidently expect to find an interest­
ing 1 6-dimensional number system. Indeed, such a system can be con­
structed in a natural way, called the Cayley-Dickson process. If you apply 
that process to the reals, you get the complexes. Apply it to the complexes, 
you get the quaternions. Apply it to the quaternions, you get the octo­
nions. And if you plow ahead and apply it to the octonions, you get the 
sedenions, a 1 6-dimensional number system, followed by algebras of di­
mension 32, 64, and so on, doubling at every step. 

So there is a 1 6-squares formula, then? 



2 6 6  W H Y  B E A U T Y  I S  T R U T H  

No. The sedenion norm i s  not multiplicative. Product formulas for 
sums of squares exist only when the number of squares involved is 1 ,  2, 4, 
or 8. The law of small numbers strikes again: the apparent pattern of 
powers of two grinds to a halt. 

Why? Basically, the Cayley-Dickson process slowly destroys laws of al­
gebra. Every time you apply it, the resulting system is not quite as well be­
haved as the previous one. Step by step, law by law, the elegant real 
number system descends into anarchy. Let me explain in more detail. 

The four number systems have other features in common aside from 
their norms. Their most striking feature, which qualifies them as general­
izations of the real numbers, is that they are "division algebras." There are 
many algebraic systems in which notions of addition, subtraction, and 
multiplication are valid. But in these four systems, you can also divide. The 
existence of a multiplicative norm makes them "normed division alge­
bras." For a while, Graves thought his method of going from 4 to 8 could 
be repeated, leading to normed division algebras with 1 6, 32, 64 dimen­
sions, any power of two. But he hit a snag with the sedenions and began to 
doubt whether a 1 6-dimensional normed division algebra could exist. He 
was right: we now know that there exist only four normed division alge­
bras, of dimensions 1 ,  2, 4, and 8. And there is no 1 6-squares formula like 
Graves's eight-squares formula or Euler's four-squares formula. 

Why is this? At every step along the chain of powers of two, the new 
number systems lose a certain amount of structure. The complex num­
bers are not ordered along a line. The quaternions fail to obey the alge­
braic rule ab = ba, the "commutative law." The octonions fail to obey the 
associative law (ab)c = a(bc) ,  though they do obey the "alternative law" 
(ab)a = a(ba) . The sedenions fail to form a division algebra and have no 
multiplicative norm either. 

This is far more fundamental than just a failure of the Cayley-Dick­
son process. In 1 898, Hurwitz proved that the only normed division al­
gebras are our four old friends. In 1 930, Max Zorn proved that these 
same four algebras are the only alternative division algebras. They truly 
are exceptional. 

This is the sort of thing pure mathematicians, with their Platonist in­
stincts, love. But the only really important cases for the rest of humanity 
seemed to be the real and complex numbers, which were of massive prac­
tical importance. The quaternions did show up in some useful if esoteric 
applications, but the octonions shunned the limelight of applied science. 
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They seemed to be  a pure-mathematical dead end, the sort o f  pretentious 
intellectual nonsense you would expect from people with their heads in 
the clouds. 

,:;;!.;..:" 
..

..
..•...... 

The history of mathematics shows repeatedly that it is dangerous to dis­
miss some clever or beautiful idea merely because it has no obvious utility. 
Unfortunately, this does not stop people from dismissing such ideas, often 
because they are beautiful or clever. The more "practical" people consider 
themselves to be, the more they tend to heap scorn on mathematical con­
cepts that arise from abstract questions, invented "for their own sake" in­
stead of addressing some real-world issue. The prettier the concept is, the 
greater the scorn, as if prettiness itself were a reason to be ashamed. 

Such declarations of uselessness are hostages to fortune. It takes only 
one new application, one new scientific advance, and the despised concept 
may suddenly plonk itself down on center stage-no longer useless, but 
essential. 

The examples are endless. Cayley himself said his matrices were com­
pletely useless, but today no branch of science could function without 
them. Cardano declared complex numbers to be "as subtle as they are 
useless," but no engineer or physicist could function in a world that 
lacked complex numbers. Godfrey Harold Hardy, England's leading 
mathematician in the 1 930s, was immensely pleased that number theory 
had no practical application, and in particular that it could not be used in 
warfare. Today number theory is used to encrypt messages into code, a 
technique that is vital to secure Internet commerce, and even more vital 
to the military. 

So it is turning out with the octonions. They may yet become a compul­
sory topic in mathematics courses, and even more so in physics. It is now 
emerging that the octonions are of central importance in the theory of 
Lie groups-especially those of interest in physics, especially the five ex­
ceptional Lie groups G2, F4, E6, E7, and Es

' 
with their weird dimensions 

1 4, 52, 78, 1 33, and 248. Their very existence is a puzzle. One exasperated 
mathematician declared them a brutal act of Providence . 

......
•

.....

. 

... 't� .. 
Lovers of nature enjoy revisiting well-known beauty spots and finding a 
new vantage point . . .  halfway down a waterfall, just along a ledge leading 
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off to the side of  the well-worn footpath, on a promontory overlooking a 
blue ocean vista. In the same way, mathematicians like to revisit old topics 
and look at them from new points of view. As our perspective on mathe­
matics changes, we can often reinterpret old concepts in new, insightful 
ways. This is not just a matter of mathematical tourism, gazing open­
mouthed at the ineffable from a different angle. It provides new, powerful 
ways to tackle old and new problems. Nowhere has this tendency been 
more apparent, or more informative, than in the theory of Lie groups. 

Recall that Killing organized almost all simple Lie groups into four infi­
nite families, two of which are really parts of one larger family, the special 
orthogonal groups SO(n) in even and odd dimensions. The other two are 
the special unitary groups SU(n) and the symplectic groups Sp(2n) . 

We now know that these families are all variations on the same theme. 
They consist of all n X n matrices satisfying a particular algebraic condi­
tion-they are "skew-Hermitian." The only difference is that you have to 
use matrices of real numbers to get the orthogonal Lie algebras, matrices 
of complex numbers to get the unitary Lie algebras, and matrices of 
quaternions to get the symplectic Lie algebras. These algebras come in infi­
nite families because matrices come in infinitely many sizes. It is wonderful 
to see that the Lie algebras corresponding to the natural transformations of 
Hamilton's version of mechanics, his first great discovery, have a natural 
description in terms of quaternions, his last. 

It does make you wonder what happens when you use octonions as en­
tries in the matrix. Unfortunately, because of the lack of associativity, you 
don't get a new infinite family of simple Lie algebras. Actually, that should 
be "fortunately," since we know that no such family exists. But when you 
play the right games with octonions, and have the law of small numbers 
on your side, you can get Lie algebras with a vengeance. 

The first hint that this might be the case came in 1 9 1 4, when Elie Car­
tan answered an obvious question and got a surprising answer. A guiding 
principle in mathematics and physics is that if you have some interesting 
object, the first thing to ask is what its symmetry group looks like. The 
symmetry group of the real number system is trivial, consisting of only 
the identity transformation "do nothing." The symmetry group of the 
complex number system contains the identity and one mirror symmetry, 
which transforms i into -i. The symmetry group of the quaternions is 
SU (2) , which is very nearly the rotation group SO(3) in real three­
dimensional space. 
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Cartan asked, What i s  the symmetry group of  the octonions? 
If you are a Cartan, you can also answer this question. The symmetry 

group of the octonions is the smallest exceptional simple Lie group, the 
one known as G2• The 8-dimensional system of octonions has a 1 4-
dimensional symmetry group. The exceptional normed division algebra is 
directly related to the first of the exceptional Lie groups. 

To proceed further, we need to take on board one more idea, which goes 
back to the Renaissance-but to the artists, not the mathematicians. 

In those days, mathematics and art were rather close; not just in archi­
tecture but in painting. The Renaissance painters discovered how to apply 
geometry to perspective. They found geometric rules for drawing images 
on paper that really looked like three-dimensional objects and scenes. In 
so doing, they invented a new and extremely beautiful kind of geometry. 

The work of earlier artists does not look quite realistic to our eyes. 
Even a painter like Giotto (Ambrogio Bondone) managed to produce 
works with an almost photographic quality, but on close analysis the per­
spective is not completely systematic. It was Filippo Brunelleschi who, in 
1 425, formulated a systematic mathematical method for obtaining accu­
rate perspective, which he then taught to other artists. By 1 435 we find the 
first book on the topic, Leone Alberti's Della Pittura. 

The method was brought to perfection in the paintings of Piero della 
Francesca, who was also a consummate mathematician. Piero wrote three 
books on the mathematics of perspective. And it would be impossible not 
to mention Leonardo da Vinci, whose Trattato della Pittura begins by stat­
ing, "Let no one who is not a mathematician read my works," an echo of 
the slogan "Let no one ignorant of geometry enter" which legendarily was 
placed over the door of Plato's academy in ancient Greece. 

The essence of perspective is the notion of "projection," by which a 
three-dimensional scene is rendered on a flat sheet of paper by (conceptu­
ally) drawing each point of the scene to the viewer's eye, and seeing where 
that line meets the paper. A key idea is that projections distort shapes in 
ways not permitted by Euclid. In particular, projection can turn parallel 
lines into lines that meet. 

We see this effect every day. When we stand on a bridge and see a long, 
straight railroad track or highway disappearing into the distance, the lines 
converge and seem to meet at the horizon. The real lines remain the same 
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hOrizon 

How projection makes para l le ls  meet at the horizon .  

distance apart, but perspective causes the perceived distance to shrink as 
the lines get farther away from us. In a mathematical idealization, infinitely 
long parallel lines in a plane also meet if they are suitably projected. But 
the place where they meet is not the image of anything in the plane-it 
can't be; they don't meet in the plane. It is the apparent "horizon" toward 
which the lines, and the plane, extend. On the plane itself, the horizon is 
infinitely distant, but its projection is a perfectly sensible line across the 
middle of the picture. 

This line is known as the "line at infinity." Like the square root of mi­
nus one, it is a fiction, but an extremely useful one. The kind of geometry 
that emerges is called projective geometry, and in the spirit of Klein's Er­
langen program, it is the geometry of those features of a scene that are 
not changed by projections. Every artist who makes perspective drawings 
with a horizon line and "vanishing points" to organize his or her images to 
look like real objects is using projective geometry. 

In a projective plane, geometry is very elegant. Any two points can be 
joined by a unique line, just as in Euclid's geometry. But any two distinct 
lines meet, too, at exactly one point. Parallels, which so exercised Euclid, 
do not exist. 

If this reminds you of the Fano plane, you're right. The Fano plane is a 
finite projective geometry. 

From Renaissance perspective to the exceptional Lie groups is now but a 
short step. The projective plane that was implicit in Alberti's methods was 
made explicit as a new kind of geometry. In 1 636, Girard Desargues, an 
army officer who later became an architect and engineer, published Pro-
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posed Draft of an Attempt to Treat the Results of a Cone Intersecting a Plane. It 
sounds like a book on conics, and it was, but instead of using the tradi­
tional Greek geometry, Desargues used projective methods. Just as Euclid­
ean geometry could be turned into algebra by using Descartes 's 
coordinates (x, y) , a pair of real numbers, so projective geometry could be 
turned into algebra by letting x or y become infinite (in a cleverly controlled 
manner, involving ratios of three coordinates and setting 1 ..:.. ° = infinity) . 

What you can do with real numbers, you can also do with complex 
numbers, so now you get the complex proj ective plane. And if those 
work, why not try the quaternions or the octonions? 

There are problems-the obvious methods don't work, because of the 
lack of commutativity. But in 1 949, the mathematical physicist Pascual 
Jordan found a meaningful way to construct an octonionic projective 
plane with 1 6  real dimensions. In 1 950, the group theorist Armand Borel 
proved that the second exceptional Lie group F 4 is the symmetry group of 
the octonionic projective plane-much like the complex plane, but 
formed from two 8-dimensional "rulers" labeled with octonions, not real 
numbers. 

So now there was an octonionic explanation of two of the five excep­
tional Lie groups. What about the other three-E6, E7, and Ea? 

:;;.!.� 
.....

.•...... 
The view of the exceptional Lie groups as brutal acts of a malicious deity 
was fairly widespread until 1 959, when Hans Freudenthal and Jacques Tits 
independently invented the "magic square," and explained E6, E7, and Es. 

The rows and columns of the magic square correspond to the four 
normed division algebras. Given any two normed division algebras, you 
look in the corresponding row and column, and what the magic square 
gives you-following a technical mathematical recipe-is a Lie group. 
Some of these groups are straightforward; for example, the Lie group 
corresponding to the real row and the real column is the group SO(3) of 
rotations in three-dimensional space. If both row and column corre­
spond to the quaternions, you get the group S0(1 2) of rotations in 
twelve-dimensional space, which to mathematicians is j ust as familiar. But 
if you look in the octonion row or column, the entries are the exceptional 
Lie groups F4, E6, E7, and Es. The missing exceptional group G2 is also 
intimately associated with the octonions-as we've already seen, it is their 
symmetry group. 
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So  now the general opinion i s  that the exceptional Lie groups exist be­
cause of the wisdom of the deity in permitting the octonions to exist. We 
should have known. As Einstein remarked, the Lord is subtle but not ma­
licious. All five exceptional Lie groups are the symmetries of various octo­
nionic geometries. 

Around 1 956, the Russian geometer Boris Rosenfeld, perhaps thinking 
about the magic square, conjectured that the three remaining exceptional 
groups E6, E7, and Es are also the symmetry groups of projective planes. 
In place of the octonions, however, you have to use the following struc­
tures: 

• For E6: the bioctonions, built from complex numbers and octonions. 

• For E7: the quateroctonions, built from quaternions and octonions. 

• For Es: the octooctonions, built from octonions and octonions. 

The only slight snag was that no one knew how to define sensible pro­
jective planes over such combinations of number systems. But there was 
some evidence that the idea made sense. As matters currently stand, we 
can now prove Rosenfeld's conjecture, but only by making use of the 
groups to construct the projective planes. This is not very satisfactory, be­
cause the idea was to go the other way, from the projective planes to the 
groups. Still, it's a start. In fact, for E6 and E7 there now exist independent 
ways to construct the projective planes. Only Es is still holding out . 

.. �.!
.
�., 

...•... 

Were it not for the octonions, the Lie group story would be more straight­
forward, as Killing originally hoped, but nowhere near as interesting. Not 
that we mortals get to choose: the octonions, and all the associated para­
phernalia, are there. And in some obscure way, the existence of the uni­
verse may depend on them. 

The connection between the octonions and life, the universe, and 
everything emerges from string theory. The key feature is the need for ex­
tra dimensions to hold the strings. Those extra dimensions can in princi­
ple have lots of shapes, and the big question is to find the right shape. In 
old-fashioned quantum theory, a key principle is symmetry, and that's the 
case in string theory too. So of course Lie groups get in on the act. Every­
thing hinges on those Lie groups of symmetries, and again the exceptional 
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groups stick out-not a s  sore thumbs, but a s  opportunities for unusual 
coincidences that could help make the physics work. 

Which gets us back to the octonions. 
Here's an example of their influence. In the 1 980s, physicists noticed 

that a rather nice relationship occurs in space-times of 3, 4, 6, and 1 0  di­
mensions. Vectors (directed lengths) and spinors (algebraic gadgets origi­
nally created by Paul Dirac in his theory of electron spin) are very neatly 
related in these dimensions, and only these. Why? It turns out that the vec­
tor-spinor relationship holds precisely when the dimension of space-time 
is 2 greater than that of a normed division algebra. Subtract 2 from 3, 4, 6, 
and 1 0, and what you get is 1 ,  2, 4, and 8. 

The mathematical point is that in 3-, 4-, 6-, and l O-dimensional string 
theory, every spinor can be represented using two numbers in the associ­
ated normed division algebra. This doesn't happen for any other number 
of dimensions, and it has a number of nice consequences for physics. So 
we have four candidate string theories here: real, complex, quaternionic, 
and octonionic. And it so happens that among these possible string theo­
ries, the one that is currently thought to have the best chance of corre­
sponding to reality is the 1 0-dimensional one, specified by the octonions. If 
this 1 0-dimensional theory really does correspond to reality, then our uni­
verse is built from octonions. 

And that's not the only place where these strange "numbers," barely 
clinging to that name because they just satisfy enough of the rules of alge­
bra, are influential. That fashionable new candidate string theory, M­
theory, involves i i -dimensional space-time. In order to reduce the per­
ceptible part of space-time from 1 1  dimensions to the familiar 4, we have 
to throw away 7 by rolling them up so tightly that they can't be detected. 
And how do you do that for i i -dimensional supergravity? You make use 
of the exceptional Lie group G2, the symmetry group of the octonions. 

There they are again: no longer quaint Victoriana but a hefty clue to a 
possible Theory of Everything. It's an octonionic world. 
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SffKfHS RfTfH THU TH RHD BfRU TV 

W as Keats right? Is beauty truth, and truth beauty? 
The two are intimately connected, possibly because our minds 

react similarly to both. But what works in mathematics need not 
work in physics, and vice versa. The relationship between mathe­

matics and physics is deep, subtle, and puzzling. It is a philosophical co­
nundrum of the highest order-how science has uncovered apparent 
"laws" in nature, and why nature seems to speak in the language of math­
ematics. 

Is the universe genuinely mathematical? Are its apparent mathematical 
features mere human inventions? Or does it seem mathematical to us be­
cause mathematics is the deepest aspect of its infinitely complex nature 
that we are able to understand? 

Mathematics is not some disembodied version of ultimate truth, as 
many used to think. If anything emerges from our tale, it is that mathe­
matics is created by people. We can readily identify with their triumphs 
and their tribulations. Who could fail to be moved by the appalling deaths 
of Abel and Galois, both at the age of 2 1 ?  One was deeply loved but 
never earned enough money to marry; the other, brilliant and unstable, fell 
in love but was rejected, and perhaps died because of that love. Today's 
medical advances would have saved Abel, and might even have helped 
Hamilton stay sober. 

Because mathematicians are human and live ordinary human lives, the 
creation of new mathematics is partly a social process. But neither mathe­
matics nor science is wholly the result of social processes, as social rela­
tivists often claim. Both must respect external constraints: logic, in the 
case of mathematics, and experiment, in the case of science. However 

2 7 5  
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desperately mathematicians might want to trisect an angle by Euclidean 
methods, the plain fact is that it is impossible. However strongly physicists 
might want Newton's law of gravity to be the ultimate description of the 
universe, the motion of the perihelion of Mercury proves that it's not. 

This is why mathematicians are so stubbornly logical, and obsessed by 
concerns that most people could not care less about. Does it really matter 
whether you can solve a quintic by radicals? 

History's verdict on this question is unequivocal. It does matter. It may 
not matter directly for everyday life, but it surely matters to humanity as a 
whole-not because anything important rests on being able to solve quin­
tic equations, but because understanding why we can't opens a secret 
doorway to a new mathematical world. If Galois and his predecessors had 
not been obsessed with understanding the conditions under which an 
equation can be solved by radicals, humanity's discovery of group theory 
would have been greatly delayed, and perhaps might not have happened. 

You may not encounter groups in your kitchen or on your drive to 
work, but without them today's science would be severely curtailed, and 
our lives would be far different. Not so much in gadgetry like jumbo jets 
or GPS navigation or cell phones-though those are part of the story 
too-but in insight into nature. No one could have predicted that a 
pedantic question about equations could reveal the deep structure of the 
physical world, but that is what happened. 

The clear message of history is a simple one. Research on deep mathe­
matical issues should not be rejected or denigrated merely because those 
issues seem to have no direct practical use. Good mathematics is more 
valuable than gold, and where it comes from is mostly irrelevant. What 
counts is where it leads. 

�!.� 
...•....

.. 

The astonishing thing is that the best mathematics usually leads some­
where unexpected, and a lot of it turns out to be vital for science and 
technology, even though it was originally invented for some totally differ­
ent purpose. The ellipse, studied by the Greeks as a section of a cone, was 
the clue that led, via Kepler, from Tycho Brahe's observations of the mo­
tion of Mars to Newton's theory of gravity. Matrix theory, whose inventor 
Cayley apologized for its uselessness, became an essential tool in statistics, 
economics, and virtually every branch of science. The octonions may be 
the inspiration for a Theory of Everything. Of course, the theory of su-
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perstrings may turn out to be just a pretty piece o f  mathematics with no 
relevance to physics. If so, the existing uses of symmetry in quantum the­
ory still demonstrate that group theory provides deep insights into nature, 
even though it was developed to answer a question in pure mathematics. 

Why is mathematics so useful for purposes that its inventors never in­
tended? 

The Greek philosopher Plato said that "God ever geometrizes." Galileo 
said much the same thing: "Nature's great book is written in mathematical 
language." Johannes Kepler set out to find mathematical patterns in plan­
etary orbits. Some of them led Newton to his law of gravitation; others 
were mystical nonsense. 

Many modern physicists have commented on the astonishing power of 
mathematical thought. Wigner alluded to the "unreasonable effective­
ness" of mathematics as a way to understand nature; the phrase appears in 
the title of an article he wrote in 1 960. In the body of the article he said he 
would tackle two main points: 

The first point is that the enormous usefulness of mathematics in 
the natural sciences is something bordering on the mysterious and 
that there is no rational explanation for it. Second, it is just this un­
canny usefulness of mathematical concepts that raises the question 
of the uniqueness of our physical theories. 

And: 

The miracle of the appropriateness of the language of mathematics 
for the formulation of the laws of physics is a wonderful gift which 
we neither understand nor deserve. We should be grateful for it and 
hope that it will remain valid in future research and that it will ex­
tend, for better or for worse, to our pleasure, even though perhaps 
also to our bafflement, to wide branches of learning. 

Paul Dirac believed that in addition to being mathematical, nature's 
laws also had to be beautiful. In his mind, beauty and truth were two 
sides of the same coin, and mathematical beauty gave a strong clue to 
physical truth. He even went so far as to say he would prefer a beautiful 
theory to a correct one, and that he valued beauty above simplicity: "The 
research worker, in his efforts to express the fundamental laws of nature 
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i n  mathematical form, should strive mainly for mathematical beauty. He 
should still take simplicity into consideration in a subordinate way to 
beauty . . .  where they clash the latter must take precedence." 

Interestingly, Dirac's concept of beauty in mathematics differed consid­
erably from that of most mathematicians. It did not include logical rigor, 
and many steps in his work had logical gaps-the best-known example 
being his "delta function," which has self-contradictory properties. Never­
theless, he made very effective use o f  this "function," and eventually 
mathematicians reformulated the idea rigorously-at which point it was 
indeed a thing of beauty. 

Still, as Dirac's biographer Helge Kragh has remarked, "All of [Dirac's] 
great discoveries were made before [the mid- 1 930s] , and after 1 935 he 
largely failed to produce physics of lasting value. It is not irrelevant to 
point out that the principle of mathematical beauty governed his thinking 
only during the later period." 

Not irrelevant, perhaps, but not correct either. Dirac may have made 
the principle explicit during his later period, but he was using it earlier. All 
of his best work is mathematically elegant, and he relied on elegance as a 
test of whether he was heading in a fruitful direction. What all this sug­
gests is not that mathematical beauty is the same as physical truth but that 
it is necessary for physical truth. It is not sufficient. Many beautiful theories 
have turned out, once confronted with experiments, to be complete non­
sense. As Thomas Huxley said, "Science is organized common sense, 
where many a beautiful theory was killed by an ugly fact." 

Yet there is much evidence that nature, at root, is beautiful. The math­
ematician Hermann Weyl, whose research linked group theory and 
physics, said, "My work has always tried to unite the true with the beau­
tiful and when I had to choose one or the other, I usually chose the 
beautiful." Werner Heisenberg, a founder of quantum mechanics, wrote 
to Einstein, 

You may object that by speaking of simplicity and beauty I am intro­
ducing aesthetic criteria of truth, and I frankly admit that I am 
strongly attracted by the simplicity and beauty of the mathematical 
schemes which nature presents us. You must have felt this too: the 
almost frightening simplicity and wholeness of the relationship, 
which nature suddenly spreads out before us. 
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Einstein, in turn, felt that s o  many fundamental things are unknown­
the nature of time, the sources of ordered behavior of matter, the shape 
of the universe-that we must remind ourselves how far we are from un­
derstanding anything "ultimate." To the extent that it is useful, mathemat­
ical elegance provides us only local and temporary truths. Still, it is our 
best way forward. 

Throughout history, mathematics has been enriched from two different 
sources. One is the natural world, the other the abstract world of logical 
thought. It is these two in combination that give mathematics its power to 
inform us about the universe. Dirac understood this relationship perfectly: 
"The mathematician plays a game in which he himself invents the rules 
while the physicist plays a game in which the rules are provided by nature, 
but as time goes on it becomes increasingly evident that the rules which 
the mathematician finds interesting are the same as those which nature has 
chosen." Pure and applied mathematics complement each other. They are 
not poles apart, but the two ends of a connected spectrum of thought. 

The story of symmetry demonstrates how even a negative answer to a 
good question ("can we solve the quintic?") can lead to deep and funda­
mental mathematics. What counts is why the answer is negative. The 
methods that reveal this can be used to solve many other problems­
among them, deep questions in physics. But our story also shows that the 
health of mathematics depends on the infusion of new life from the phys­
ical world. 

The true strength of mathematics lies precisely in this remarkable fu­
sion of the human sense of pattern ("beauty") with the physical world, 
which acts both as a reality check ("truth") and as an inexhaustible source 
of inspiration. We cannot solve the problems posed by science without 
new mathematical ideas. But new ideas for their own sake, if carried to 
extremes, can degenerate into meaningless games. The demands of sci­
ence keep mathematics running along fruitful lines, and frequently sug­
gest new ones. 

If mathematics were entirely demand-driven, a slave of science, you 
would get the work you expect from a slave-sullen, grudging, and slow. If  
the subject were entirely driven by internal concerns, you would get a spoilt, 
selfish brat-pampered, self-centered, and full of its own importance. The 
best mathematics balances its own needs against those of the outside world. 
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This i s  what its unreasonable effectiveness derives from. A balanced 
personality learns from its experiences, and transfers that learning to new 
circumstances. The real world inspired great mathematics, but great math­
ematics can transcend its origins. 

The unknown Babylonian who discovered how to solve a quadratic 
equation could never have realized, in his wildest dreams, what his legacy 
would be more than three thousand years later. No one could have pre­
dicted that questions about the solvability of equations would lead to one 
of the core concepts of mathematics, that of a group, or that groups 
would prove to be the language of symmetry. Even less could anyone have 
known that symmetry would unlock the secrets of the physical world. 

Being able to solve a quadratic has very limited utility in physics. Being 
able to solve a quintic is even less useful, if only because any solution must 
be numerical, not symbolic, or else employ symbols specially invented for 
the purpose, which do little more than cover the question with a fig leaf 
But understanding why quintics cannot be solved, appreciating the crucial 
role of symmetry, and pushing the underlying idea as far as it could go-­
that opened up entire new physical realms. 

The process continues. The implications of symmetry for physics, in­
deed for the whole of science, are still relatively unexplored. There is 
much that we do not yet understand. But we do understand that symmetry 
groups are our path through the wilderness-at least until a still more 
powerful concept (perhaps already waiting in some obscure thesis) comes 
along. 

In physics, beauty does not automatically ensure truth, but it helps. 
In mathematics, beauty must be true-because anything false is ugly. 
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